【题目】已知:如图,点A,B,C三点在⊙O上,AE平分∠BAC,交⊙O于点E,交BC于点D,过点E作直线l∥BC,连结BE. ![]()
(1)求证:直线l是⊙O的切线;
(2)如果DE=a,AE=b,写出求BE的长的思路.
参考答案:
【答案】
(1)解:如图,连接OE、OB、OC,
![]()
∵AE平分∠BAC,
∴∠BAE=∠CAE,
∴
,
∴∠BOE=∠COE,
∵OB=OC,
∴OE⊥BC,
∵l∥BC,
∴OE⊥l,
∴直线l是⊙O的切线;
(2)∵∠BAE=∠CAE,∠CAE=∠CBE,
∴∠BAE=∠DBE,
又∵∠AEB=∠BED,
∴△ABE∽△BDE,
∴
=
,
∴BE2=AEDE=ab.
【解析】(1)作辅助线,连接半径,由角平分线得:∠BAE=∠CAE,圆周角相等,则弧相等,再由垂径定理证明OE⊥BC,所以OE⊥l,直线l与⊙O相切;(2)根据∠BAE=∠CAE、∠CAE=∠CBE结合公共角证△ABE∽△BDE可得
=
,从而得出答案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】中国国家邮政局公布的数据显示,2016年中国快递业务量突破313.5亿件,同比增长51.7%,快递业务量位居世界第一,业内人士表示,快递业务连续6年保持50%以上的高速增长,已成为中国经济的一匹“黑马”,未来中国快递业务仍将保持快速增长势头,以下是根据相关数据绘制的统计图,请你预估2017年全国快递的业务量大约为(精确的0.1)亿元.

-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:(
)﹣1+tan60°+|﹣
|﹣
. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知:在△ABC中,AD是BC边上的中线,点E是AD的中点;过点A作AF∥BC,交BE的延长线于F,连接CF.

(1)求证:四边形ADCF是平行四边形;
(2)填空: ①当AB=AC时,四边形ADCF是形;
②当∠BAC=90°时,四边形ADCF是形. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=
的图象交于A、B两点,与x轴交于点C;点A在第一象限,点B的坐标为(﹣6,n);E为x轴正半轴上一点,且tan∠AOE=
. 
(1)求点A的坐标;
(2)求一次函数的表达式;
(3)求△AOB的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为( )

A.
B.
C.
D. 不能确定 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠C=90°,BC=6 cm,AC=8 cm,将△BCD沿BD折叠,使点C落在AB边的C′点处,那么△ADC′的面积是________.

相关试题