【题目】如图,抛物线y=-x2+bx+c与直线AB交于A(-4,-4),B(0,4)两点,直线AC:y=-
x-6交y轴与点C.点E是直线AB上的动点,过点E作EF⊥x轴交AC于点F,交抛物线于点G.
(1)求抛物线y=-x2+bx+c的表达式;
(2)连接GB、EO,当四边形GEOB是平行四边形时,求点G的坐标;
(3)①在y轴上存在一点H,连接EH、HF,当点E运动到什么位置时,以A、E、F、H为顶点的四边形是矩形?求出此时点E、H的坐标;
②在①的前提下,以点E为圆心,EH长为半径作圆,点M为⊙E上一动点,求
AM+CM的最小值.
![]()
参考答案:
【答案】(1)y=-x2-2x+4;(2)G(-2,4);(3)①H(0,-1);②![]()
【解析】分析:(1)利用待定系数法求出抛物线解析式;
(2)先利用待定系数法求出直线AB的解析式,进而利用平行四边形的对边相等建立方程求解即可;
(3)①先判断出要以点A,E,F,H为顶点的四边形是矩形,只有EF为对角线,利用中点坐标公式建立方程即可;
②先取EG的中点P进而判断出△PEM∽△MEA即可得出PM=
AM,连接CP交圆E于M,再求出点P的坐标即可得出结论.
详解:(1)(1)∵点A(-4,-4),B(0,4)在抛物线y=-x2+bx+c上,
∴
,
∴
,
∴抛物线的解析式为y=-x2-2x+4;
(2)设直线AB的表达式为y=kx+b
∵直线AB过点A(-4,-4),B(0,4),
∴
,解得
,
∴y=2x+4
设E(m,2m+4),则G(m,-m2-2m+4)
∵四边形GEOB是平行四边形,
∴GE=OB=4,
∴-m2-2m+4-2m-4=4,解得m=-2
∴G(-2,4)
(3)①设E(m,2m+4),则F(m,-
m-6)
过A作AN⊥EG,过H作HQ⊥EG
四边形AFHE是矩形,∴△PFN≌△HEQ,∴AN=QH,∴m+4=-m,解得m=-2,E(-2,0)
EQ=FN=-4+
m+6=1
∴H(0,-1)
![]()
![]()
②由题意可得,E(-2,0),H(0,-1),∴EH=
,即⊙E的半径为
,
∵M点在⊙E上,∴EM=![]()
∵A(-4,-4),E(-2,0),∴AE=2![]()
在AE上截取EP=
EM,则EP=
,连接PM,
在ΔEPM与ΔEMA中,∵
=
=
=
=
,∠PEM=∠MEA,∴ΔEPM∽ΔEMA∴PM=
AM
∴线段PC的长即为
AM+CM的最小值
由EP=
EM=
AE=
×2
=
,AP=AE-PE=
, AC=2
∴PC=![]()
即
AM+CM的最小值为
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形ABCD中,AB=4,BC=3,点O为对角线BD的中点,点P从点A出发,沿折线AD﹣DO﹣OC以每秒1个单位长度的速度向终点C运动,当点P与点A不重合时,过点P作PQ⊥AB于点Q,以PQ为边向右作正方形PQMN,设正方形PQMN与△ABD重叠部分图形的面积为S(平方单位),点P运动的时间为t(秒).

(1)求点N落在BD上时t的值;
(2)直接写出点O在正方形PQMN内部时t的取值范围;
(3)当点P在折线AD﹣DO上运动时,求S与t之间的函数关系式;
(4)直接写出直线DN平分△BCD面积时t的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,用(-1,0)表示A点的位置,用(2,1)表示B点的位置,那么:

(1)画出直角坐标系。
(2)写出△DEF的三个顶点的坐标。
(3)在图中表示出点M(6,2),N(4,4)的位置。
-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下列解题过程
已知a、b、c为△ABC为三边,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状
解:∵a2c2-b2c2=a4-b4①
∴c2(a2-b2)=(a2-b2)(a2+b2)②
∴c2=a2+b2③
∴△ABC是直角三角形
回答下列问题:
(1)上述解题过程,从哪一步开始出现错误?请写出该步的序号________.
(2)错误原因为________.
(3)本题正确结论是什么,并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】A、B两名同学在同一个学校上学,B同学上学的路上经过A同学家。A同学步行,B同学骑自行车,某天,A,B两名同学同时从家出发到学校,如图,
A表示A同学离B同学家的路程
A(m)与行走时间
(min)之间的函数关系图象,
B表示B同学离家的路程
B(m)与行走时间
(min)之间的函数关系图象.(1)A,B两名同学的家相距________m.
(2)B同学走了一段路后,自行车发生故障,进行修理,修理自行车所用的时间是 _____min.
(3)B同学出发后______min与A同学相遇.
(4)求出A同学离B同学家的路程
A与时间
的函数关系式.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,AB=AC,AD=DE,∠BAD=18°,∠EDC=12°,则∠DAE的度数是( )

A.52°B.58°C.60°D.62°
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在已知的△ABC中,按以下步骤作图:①分别以B、C为圆心,以大于
BC的长为半径作弧,两弧相交于点M、N;②作直线MN交AB于点D,连接CD,若CD=AD,∠B=20°,则下列结论中错误的是( )
A. ∠CAD=40° B. ∠ACD=70° C. 点D为△ABC的外心 D. ∠ACB=90°
相关试题