【题目】计算:(π﹣2017)0+
cos45°﹣|﹣3|+(
)﹣1 .
参考答案:
【答案】解:原式=1+
×
﹣3+2 =1+1﹣3+2
=1.
【解析】原式利用零指数幂、负整数指数幂法则,特殊角的三角函数值,以及绝对值的代数意义化简,计算即可得到结果.
【考点精析】解答此题的关键在于理解零指数幂法则的相关知识,掌握零次幂和负整数指数幂的意义: a0=1(a≠0);a-p=1/ap(a≠0,p为正整数),以及对整数指数幂的运算性质的理解,了解aman=am+n(m、n是正整数);(am)n=amn(m、n是正整数);(ab)n=anbn(n是正整数);am/an=am-n(a不等于0,m、n为正整数);(a/b)n=an/bn(n为正整数).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,三角形ABC(记作△ABC)在方格中,方格纸中的每个小方格都是边长为1个单位的正方形,三个顶点的坐标分别是A(﹣2,1),B(﹣3,﹣2),C(1,﹣2),先将△ABC向上平移3个单位长度,再向右平移2个单位长度,得到A1B1C1.
(1)在图中画出△A1B1C1;
(2)点A1,B1,C1的坐标分别为 、 、 ;
(3)若y轴有一点P,使△PBC与△ABC面积相等,求出P点的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,P为反比例函数y=
(x>0)图象上一点,过点P分别向x轴,y轴作垂线,垂足分别为M、N,直线y=﹣x+2与PM、PN分别交于点E、F,与x轴、y轴分别交于A、B,则AFBE的值为 . 
-
科目: 来源: 题型:
查看答案和解析>>【题目】八年级某班同学为了了解2012年某居委会家庭月均用水情况,随机调查了该居委会部分家庭,并将调查数据进行如下调整:
月均用水量x(t)
频数(户)
频率
0<x≤5
6
0.12
5<x≤10
a
0.24
10<x≤15
16
0.32
15<x≤20
10
0.20
20<x≤25
4
0.08
25<x≤30
2
0.04
请解答以下问题:
(1)频数分布表中a= ,把频数分布直方图补充完整;
(2)求该居委会用水量不超过15t的家庭占被调查家庭总数的百分比;
(3)若该居委会有1000户家庭,根据调查数据估计,该小区月均用水量超过20t的家庭大约有多少户?

-
科目: 来源: 题型:
查看答案和解析>>【题目】在某市2016年“书香校园,经典诵读”比赛活动中,有32万名学生参加比赛活动,其中有8万名学生分别获得一、二、三等奖,从获奖学生中随机抽取部分,绘制成不完整的统计表(如表),请根据图表解答下列问题.
获奖等级
频数
一等奖
a
二等奖
b
三等奖
275

(1)表格中a的值为 , b的值为 .
(2)扇形统计图中表示获得一等奖的扇形的圆心角为度.
(3)估计全市有多少名学生获得三等奖? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知数轴上点 A 表示的数为 6,B 是数轴上在 A 左侧的一点,且 A, B 两点间的距离为 10.动点 P 从点 A 出发,以每秒 6 个单位长度的速度沿数轴 向左匀速运动,设运动时间为 t(t>0)秒.
(1)数轴上点 B 表示的数是 ,点 P 表示的数是 (用含 t 的代数 式表示);
(2)动点 Q 从点 B 出发,以每秒 4 个单位长度的速度沿数轴向左匀速运动,若 点 P、Q 时出发.求:
①当点 P 运动多少秒时,点 P 与点 Q 相遇?
②当点 P 运动多少秒时,点 P 与点 Q 间的距离为 8 个单位长度?

-
科目: 来源: 题型:
查看答案和解析>>【题目】A、B、C、D、E五位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.
(1)若已确定A打第一场,再从其余四位同学中随机选取一位,求恰好选中B同学的概率;
(2)请用画树状图或列表法,求恰好选中A、B两位同学的概率.
相关试题