【题目】如图所示,MN是⊙O的切线,B为切点,BC是⊙O的弦且∠CBN=45°,过C的直线与⊙O,MN分别交于A,D两点,过C作CE⊥BD于点E.、![]()
(1)求证:CE是⊙O的切线;
(2)若∠D=30°,BD=4,求⊙O的半径r.
参考答案:
【答案】
(1)证明:连接OC、OB,如图,
![]()
∵MN是⊙O的切线,
∴OB⊥MN,
∴∠OBE=90°,
∵CE⊥MN,
∴∠CEB=90°,
∵∠BOC=2∠BAC=2×45°=90°,
∴四边形OBEC为矩形,
∴∠OCE=90°,
∴OC⊥CE,
∴CE是⊙O的切线
(2)解:∵OB=OC,
∴四边形OBEC为正方形,
∴BE=CE=OB=r,
∴DE=BD﹣BE=4﹣r,
在Rt△CED中,∵tanD=
=tan30°,
∴
=
,
∴r=2
﹣2
【解析】(1)连接OC、OB,依据切线的性质可得到∠OBE=90°,然后,再由圆周角定理得到∠BOC=2∠BAC=90°,接下来,再证明四边形OBEC为矩形,根据矩形的性质可得到∠OCE=90°,最后,根据切线的判定定理进行判断即可;
(2)先证明四边形OBEC为正方形,然后再依据正方形的性质得到BE=CE=OB=r,然后在Rt△CED中利用正切的定义得到
=
,然后再解关于r的方程即可.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某市为节约水资源,制定了新的居民用水收费标准.按照新标准,用户每月缴纳的水费y(元)与每月用水量x(m3)之间的关系如图所示.
(1)求y关于x的函数解析式;
(2)若某用户二、三月份共用水40m3(二月份用水量不超过25m3),缴纳水费79.8元,则该用户二、三月份的用水量各是多少m3?

-
科目: 来源: 题型:
查看答案和解析>>【题目】某校为了解本校九年级男生“引体向上”项目的训练情况,随机抽取该年级部分男生进行了一次测试(满分15分,成绩均记为整数分),并按测试成绩(单位:分)分成四类:A类(12≤m≤15),B类(9≤m≤11),C类(6≤m≤8),D类(m≤5)绘制出以下两幅不完整的统计图,请根据图中信息解答下列问题:

(1)本次抽取样本容量为 , 扇形统计图中A类所对的圆心角是度;
(2)请补全统计图;
(3)若该校九年级男生有300名,请估计该校九年级男生“引体向上”项目成绩为C类的有多少名? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的南岸边点A处,测得河的北岸边点B在其北偏东45°方向,然后向西走50m到达C点,测得点B在点C的北偏东60°方向,如图2,求出这段河的宽(结果精确到1m,备用数据
≈1.41,
≈1.73).
-
科目: 来源: 题型:
查看答案和解析>>【题目】某宾馆拥有客房90间,经营中发现:每天入住的客房数y(间)与房价x(元)(180≤x≤300)满足一次函数关系,部分对应值如下表:
x(元)
200
240
270
300
y(间)
90
70
55
40
(1)求y与x之间的函数表达式;
(2)已知每间入住的客房,宾馆每日需支出各种费用100元;每日空置的客房,宾馆每日需支出60元,当房价为多少元时,宾馆当日利润最大?求出最大值.(宾馆当日利润=当日房费收入﹣当日支出) -
科目: 来源: 题型:
查看答案和解析>>【题目】已知四边形ABCD中,EF分别是AB、AD边上的点,DE与CF交于点G.
(1)如图1,若四边形ABCD是正方形,且DE⊥CF,求证:DE=CF;
(2)如图2,若四边形ABCD是矩形,且DE⊥CF,求证:
=
;
(3)如图3,若四边形ABCD是平行四边形,当∠B=∠EGF时,第(2)问的结论是否成立?若成立给予证明;若不成立,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知在
中,
.在边
上取一点
,以
为顶点、
为一条边作
,点
在
的延长线上,
.(1)如图(1),当点
在边
上时,请说明①
;②
成立的理由.(2)如图(2),当点
在
的延长线上时,试判断
与
是否相等?

相关试题