【题目】如图,矩形纸片ABCD中,G、F分别为AD、BC的中点,将纸片折叠,使D点落在GF上,得到△HAE , 再过H点折叠纸片,使B点落在直线AB上,折痕为PQ.连接AF、EF , 已知HE=HF.下列结论:①△MEH为等边三角形;②AE⊥EF;③△PHE∽△HAE;④
, ![]()
其中正确的结论是
A.①②③
B.①②④
C.①③④
D.①②③④
参考答案:
【答案】D
【解析】解:①由折叠易得AH=AD,∠DAE=HAE,
∠AHE=∠D=90°,PQ=BC=AD,PQ⊥AB,
因为G,F分别为AD、BC的中点,
所以H也是PQ的中点,
则在Rt△AHQ中,AH=2HQ,则∠HAQ=30°,
所以∠DAE=HAE=∠HAQ=30°,
则∠AEH=60°,∠AHM=∠HAQ=30°,
所以∠EMH=∠AEH=60°,
则△MEH为等边三角形,故①正确;
②由①得MH=EH=HF,则△MEF为直角三角形,即AE⊥EF , 故②正确;
③在Rt△AHE中,
=sin30°=
,
同理,在Rt△AHQ中,
=sin30°=
,
则
=
=
,
又∠AHE=∠HPE=90°,
∴△PHE∽△HAE , 故③正确;
④设AD=x,则AH=x,BQ=HF=HE=
x,AQ=
AH=
x,
则AB=AQ+BQ=
x,
所以
=
=
,
故④正确.
故选 D.
【考点精析】本题主要考查了矩形的性质的相关知识点,需要掌握矩形的四个角都是直角,矩形的对角线相等才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在边长为4的菱形ABCD中,∠A=60°,M是AD边的中点,点N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,则线段A′C长度的最小值是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,C为线段AB上一点,点D为BC的中点,且AB=18cm,AC=4CD.
(1)图中共有 条线段;
(2)求AC的长;
(3)若点E在直线AB上,且EA=2cm,求BE的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某校招聘一名数学老师,对应聘者分别进行了教学能力、科研能力和组织能力三项测试,其中甲、乙两名应聘者的成绩如右表:(单位:分)
教学能力
科研能力
组织能力
甲
81
85
86
乙
92
80
74
(1)若根据三项测试的平均成绩在甲、乙两人中录用一人,那么谁将被录用?
(2)根据实际需要,学校将教学、科研和组织能力三项测试得分按 5:3:2 的比确定每人的最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲骑自行车从A地出发前往B地,同时乙步行从B地出发前往A地,如图的折线OPQ和线段EF,分别表示甲、乙两人与A地的距离y甲、y乙与他们所行时间x(h)之间的函数关系,且OP与EF相交于点M.
(1)求线段OP对应的y甲与x的函数关系式(不必注明自变量x的取值范围);
(2)求y乙与x的函数关系式以及A,B两地之间的距离;
(3)请从A,B两题中任选一题作答,我选择 题.
A.直接写出经过多少小时,甲、乙两人相距3km;
B.设甲、乙两人的距离为s(km),直接写出s与x的函数关系式,并注明x的取值范围.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一只小猫被关在正方形ABCD区域内,点O是对角线的交点,∠MON=90°,OM、ON分别交线段AB、BC于M、N两点,则小猫停留在阴影区域的概率为.

-
科目: 来源: 题型:
查看答案和解析>>【题目】问题情境:已知:如图1,直线AB∥CD,现将直角三角板△PMN放入图中,其中∠MPN=90°,点P始终在直线MN右侧.PM交AB于点E,PN交CD于点F,试探究:∠PFD与∠AEM的数量关系.
(1)特例如图2,当点P在直线AB上(即点E与点P重合)时,直接写出∠PFD与∠AEM的数量关系,不必证明;
(2)类比探究:如图1,当点P在AB与CD之间时,猜想∠PFD与∠AEM的数量关系,并说明理由;
(3)拓展延伸:如图3,当点P在直线AB的上方时,PN交AB于点H,其他条件不变,猜想∠PFD与∠AEM的数量关系,并说明理由.

相关试题