【题目】如图,把等腰直角
放在直角坐标系内,其中
,点
、
的坐标分别为
,将等腰直角
沿
轴向右平移,当点
落在直线
上时,则线段
扫过的面积为________.
![]()
参考答案:
【答案】![]()
【解析】
根据题意,线段BC扫过的面积应为一平行四边形的面积,其高是AC的长,底是点C平移的路程.求当点C落在直线y=x-2上时的横坐标即可.
∵∠CAB=90°,点A、B的坐标分别为(1,0)、(4,0),
∴AC=3,BC=3
,
当点C落在直线y=x-2上时,如图,
![]()
故四边形BB′C′C是平行四边形,
则A′C′=AC=3,
把y=3代入直线y=x-2,
解得x=5,即OA′=5,
故AA′=BB′=4,
则平行四边形BB′C′C的面积=BB′×A′C′=4×3=12.
故答案是:12.
-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下列材料:
关于x的方程:
的解是
,
;
即
的解是
;
的解是
,
;
的解是
,
;
请观察上述方程与解的特征,比较关于x的方程
与它们的关系,猜想它的解是什么?并利用“方程的解”的概念进行验证.
由上述的观察、比较、猜想、验证,可以得出结论:如果方程的左边是未知数与其倒数的倍数的和,方程的右边的形式与左边完全相同,只是把其中的未知数换成了某个常数,那么这样的方程可以直接得解,请用这个结论解关于x的方程:
. -
科目: 来源: 题型:
查看答案和解析>>【题目】某电器商场销售甲、乙两种品牌空调,已知每台乙种品牌空调的进价比每台甲种品牌空调的进价高20%,用7200元购进的乙种品牌空调数量比用3000元购进的甲种品牌空调数量多2 台.
(1)求甲、乙两种品牌空调的进货价;
(2)该商场拟用不超过16000 元购进甲、乙两种品牌空调共10台进行销售,其中甲种品牌空调的售价为2500元/台,乙种品牌空调的售价为3500元/台.请你帮该商场设计一种进货方案,使得在售完这10 台空调后获利最大,并求出最大利润. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系内,已知直线l1经过原点O 及A(2,2
)两点,将直线l1向右平移4个单位后得到直线l2 , 直线l2与x 轴交于点B. 
(1)求直线l2的函数表达式;
(2)作∠AOB 的平分线交直线l2于点C,连接AC.求证:四边形OACB是菱形;
(3)设点P 是直线l2上一点,以P 为圆心,PB 为半径作⊙P,当⊙P 与直线l1相切时,请求出圆心P 点的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,已知二次函数y=x2+bx+c的图象与x 轴交于A(﹣1,0)、B(3,0)两点,与y 轴交于点C,顶点为D,对称轴为直线l.

(1)求该二次函数的表达式;
(2)若点E 是对称轴l 右侧抛物线上一点,且S△ADE=2S△AOC , 求点E 的坐标;
(3)如图2,连接DC 并延长交x 轴于点F,设P 为线段BF 上一动点(不与B、F 重合),过点P 作PQ∥BD 交直线BC 于点Q,将直线PQ 绕点P 沿顺时针方向旋转45°后,所得的直线交DF 于点R,连接QR.请直接写出当△PQR 与△PFR 相似时点P 的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图
,在矩形
中,
,
,点
从
点出发,沿
路线运动,到
点停止;点
从
点出发,沿
运动,到
点停止.若点
、点
同时出发,点
的速度为每秒
,点
的速度为每秒
,
秒时点
、点
同时改变速度,点
的速度变为每秒
,点
的速度变为每秒
.如图
是点
出发
秒后
的面积
与
(秒)的函数关系图象;图
是点
出发
秒后
的面积
与
(秒)的函数关系图象.根据图象:
求
、
、
的值;
设点
出发
(秒)后离开点
的路程为
,请写出
与
的函数关系式,并求出点
与
相遇时
的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为( )

A.1.8
B.2.4
C.3.2
D.3.6
相关试题