【题目】魔方,又叫魔术方块,也称鲁比克方块,是匈牙利布达佩斯建筑学院厄尔诺·鲁比克教授在1974年发明的。魔方与中国人发明的“华容道”,法国人发明的“独立钻石”一同被称为智力游戏界的三大不可思议。如图是一个4阶魔方,又称“魔方的复仇”,由四层完全相同的64个小立方体组成,体积为64
.
![]()
(1)求组成这个魔方的小立方体的棱长.
(2)图中阴影部分是一个正方形,则该阴影部分正方形的面积为_________
. 边长是___________
.
参考答案:
【答案】(1)1cm;(2)
; ![]()
【解析】试题分析:(1)先求1个小立方体的体积为64÷64=1cm3,再开立方就是小立方体的棱长;
(2)根据勾股定理可求得阴影部分的边长,平方后就是面积.
试题解析::(1)棱长=
,
答:组成这个魔方的小立方体的棱长为1cm;
(2)由勾股定理得:阴影部分正方形的边长=
,
面积=(
)2=10,
-
科目: 来源: 题型:
查看答案和解析>>【题目】钝角三角形ABC中,∠BAC>90°,AB=AC,∠ACB=α,过点A的直线l交BC边于点D.点E在直线l上,且BC=BE.,点E在AD延长线上.
①当α=30°,点D恰好为BC中点时,补全图1直接写出∠BAE= °,
∠BEA= °;
②如图2,若∠BAE=2α,求∠BEA的度数(用含α的代数式表示);

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在平面直角坐标系中,△AOB为等腰直角三角形,A(4,4)

(1)求B点坐标;
(2)如图2,若C为x正半轴上一动点,以AC为直角边作等腰直角△ACD,∠ACD=90°,连接OD,求∠AOD的度数;
(3)如图3,过点A作y轴的垂线交y轴于E,F为x轴负半轴上一点,G在EF的延长线上,以EG为直角边作等腰Rt△EGH,过A作x轴垂线交EH于点M,连FM,等式AM=FM+OF是否成立?若成立,请说明;若不成立,说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,∠A +∠B +∠C +∠D +∠E +∠F等于( )

A. 180° B. 360° C. 540° D. 720°
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB边的垂直平分线
交BC于D,AC边的垂直平分线
交BC于E,
与
相交于点O,△ADE的周长为6cm.(1)求BC的长;
(2)分别连结OA、OB、OC,若△OBC的周长为16cm,求OA的长;

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC,AB与EC交于点D.问:
(1)EC与BF有什么大小关系?并说明理由.
(2)EC与BF的位置关系是__________.(直接写出结论,不证明)

-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)如图1,∠MAN=90°,射线AE在这个角的内部,点B、C分别在∠MAN的边AM、AN上,且AB=AC,CF⊥AE于点F,BD⊥AE于点D.求证:△ABD≌△CAF;
(2)如图2,点B、C分别在∠MAN的边AM、AN上,点E、F都在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,且∠1=∠2=∠BAC.求证:△ABE≌△CAF;
(3)如图3,在△ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为15,求△ACF与△BDE的面积之和.

相关试题