【题目】如图在长方形ABCD中,AB=12cm,BC=8cm,点P从A点出发,沿A→B→C→D路线运动,到D点停止;点Q从D点出发,沿D→C→B→A运动,到A点停止.若点P、点Q同时出发,点P的速度为每秒1cm,点Q的速度为每秒2cm,用x(秒)表示运动时间.
(1)求点P和点Q相遇时的x值.
(2)连接PQ,当PQ平分矩形ABCD的面积时,求运动时间x值.
(3)若点P、点Q运动到6秒时同时改变速度,点P的速度变为每秒3cm,点Q的速度为每秒1cm,求在整个运动过程中,点P、点Q在运动路线上相距路程为20cm时运动时间x值.
![]()
参考答案:
【答案】(1)x=
;(2)4 或20;(3)4或14.5
【解析】
试题(1)根据P、Q两点运动的路程和等于AB+BC+CD列方程求解即可;
(2)分点P在AB边上,点Q在CD边上和点Q运动到A点,点P运动到点C两种情况进行讨论即可得;
(3)分变速前与变速后两种情况进行即可得.
试题解析:(1)由题意得:x+2x=12×2+8,解得: x=
;
(2)当点P在AB边上,点Q在CD边上,由题意得:2x=12-x 解得,x=4 ;
当点Q运动到点A时,用时(12+8+12)÷2=16秒,此时点P运动到BC边上,当点P运动到点C时,PQ平分矩形ABCD的面积,此时用时:(12+8)÷1=20 秒,
综上:当PQ平分矩形ABCD在面积时,x的值为4或20;
(3)变速前:x+2x=32-20,解得:x=4 ;
变速后:12+(x-6)+6+3×(x-6)=32+20,解得:x=14.5;
综上:x的值为4或14.5.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某市电力部门对一般照明用电实行“阶梯电价”收费,具体收费标准如下:
第一档:月用电量不超过240度的部分的电价为每度0.6元;
第二档:月用电量超过240度但不超过400度部分的电价为每度0.65元;
第三档:月用电量超过400度的部分的电价为每度0.9元.
(1)已知老王家去年5月份的用电量为380度,则老王家5月份应交电费 元;
(2)若去年6月份老王家用电的平均电价为0.70元,求老王家去年6月份的用电量;
(3)已知老王家去年7、8月份的用电量共500度(7月份的用电量少于8月份的用电量),两个月的总电价是303元,求老王家7、8月的用电量分别是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】小芳从家骑自行车去学校,所需时间y(min)与骑车速度x(m/min)之间的反比例函数关系如图.
(1)小芳家与学校之间的距离是多少?
(2)写出y与x的函数表达式;
(3)若小芳7点20分从家出发,预计到校时间不超过7点28分,请你用函数的性质说明小芳的骑车速度至少为多少?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,从一艘船的点A处观测海岸上高为41m的灯塔BC(观测点A与灯塔底部C在一个水平面上),测得灯塔顶部B的仰角为35°,则观测点A到灯塔BC的距离为 . (精确到1m)
【参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7】
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=1,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,在正方形ABCD中,点E、F在BD上,且AB=BE=DF.
(1)求证:四边形AECF是菱形;
(2)若正方形的边长为2,求四边形AECF的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在□ABCD中,E、F分别是AB、CD的中点,AF与DE相交于点G,CE与BF相交于点H.
(1)求证:四边形EHFG是平行四边形;
(2)□ABCD应满足什么条件时,四边形EHFG是矩形?并说明理由;
(3)□ABCD应满足什么条件时,四边形EHFG是正方形?(不要说明理由).

相关试题