【题目】如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0) ![]()
(1)求m的值及抛物线的顶点坐标.
(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.
参考答案:
【答案】
(1)解:把点B的坐标为(3,0)代入抛物线y=﹣x2+mx+3得:0=﹣32+3m+3,
解得:m=2,
∴y=﹣x2+2x+3=﹣(x﹣1)2+4,
∴顶点坐标为:(1,4)
(2)解:连接BC交抛物线对称轴l于点P,
![]()
则此时PA+PC的值最小,
设直线BC的解析式为:y=kx+b,
∵点C(0,3),点B(3,0),
∴
,
解得:
,
∴直线BC的解析式为:y=﹣x+3,
当x=1时,y=﹣1+3=2,
∴当PA+PC的值最小时,点P的坐标为:(1,2).
【解析】(1)首先把点B的坐标为(3,0)代入抛物线y=﹣x2+mx+3,利用待定系数法即可求得m的值,继而求得抛物线的顶点坐标;(2)首先连接BC交抛物线对称轴l于点P,则此时PA+PC的值最小,然后利用待定系数法求得直线BC的解析式,继而求得答案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB是⊙O的直径,C、D两点在⊙O上,若∠C=45°,

(1)求∠ABD的度数.
(2)若∠CDB=30°,BC=3,求⊙O的半径. -
科目: 来源: 题型:
查看答案和解析>>【题目】把5克盐溶于95克水中,盐占盐水的_______% .
-
科目: 来源: 题型:
查看答案和解析>>【题目】一个自然数m,若将其数字重新排列可得一个新的自然数n,如果m=3n,我们称m是一个“希望数”.例如:3105=3×1035,71253=3×23751,371250=3×123750.
(1)请说明41不是希望数,并证明任意两位数都不可能是“希望数”.
(2)一个四位“希望数”M记为
,已知
,且c=2,请求出这个四位“希望数”. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,在半径为2的半圆O中,半径OA垂直于直径BC,点E与点F分别在弦AB、AC上滑动并保持AE=CF,但点F不与A、C重合,点E不与A、B重合.

(1)求四边形AEOF的面积.
(2)设AE=x,S△OEF=y,写出y与x之间的函数关系式,求x取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m(30<m≤100)人时,每增加1人,人均收费降低1元;超过m人时,人均收费都按照m人时的标准.设景点接待有x名游客的某团队,收取总费用为y元.
(1)求y关于x的函数表达式;
(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两地相距665千米,客车和货车同时分别从两地出发相向而行,7小时后相遇.已知货车速度是客车速度的90%,求客车每小时行多少千米?
相关试题