【题目】如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E 、F ,连结BD 、DP ,BD与CF相交于点H. 给出下列结论:①△BDE ∽△DPE;②
;③DP 2=PH ·PB; ④
. 其中正确的是( ).![]()
A.①②③④
B.①②④
C.②③④
D.①③④
参考答案:
【答案】D
【解析】解:∵△BPC是等边三角形,
∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,
在正方形ABCD中,
∵AB=BC=CD,∠A=∠ADC=∠BCD=90°
∴∠ABE=∠DCF=30°,
∴∠CPD=∠CDP=75°,
∴∠PDE=15°,
∵∠PBD=∠PBC-∠HBC=60°-45°=15°,
∴∠EBD=∠EDP,
∵∠DEP=∠DEB,
∴△BDE∽△DPE;
故①正确;
∵PC=CD,∠PCD=30°,
∴∠PDC=75°,
∴∠FDP=15°,
∵∠DBA=45°,
∴∠PBD=15°,
∴∠FDP=∠PBD,
∵∠DFP=∠BPC=60°,
∴△DFP∽△BPH,
∴
故②错误;
∵∠PDH=∠PCD=30°,
∵∠DPH=∠DPC,
∴△DPH∽△CDP,
∴
,
∴PD2=PHCD,
∵PB=CD,
∴PD2=PHPB,
故③正确;
如图,过P作PM⊥CD,PN⊥BC,
![]()
设正方形ABCD的边长是4,△BPC为正三角形,
∴∠PBC=∠PCB=60°,PB=PC=BC=CD=4,
∴∠PCD=30°
∴CM=PN=PBsin60°=4×
,PM=PCsin30°=2,
∵DE∥PM,
∴∠EDP=∠DPM,
∴∠DBE=∠DPM,
∴
,
故④正确;
答案为:D。
①利用等边三角形的性质以及正方形的性质得出∠EPD=∠EDB=45°,再直接利用相似三角形的判定方法得出答案;
②利用等边三角形的性质结合正方形的性质证出△DFP∽△BPH,进而得出
;
③利用相似三角形的判定与性质结合锐角三角函数关系得出答案;
④利用三角函数可转化 tan ∠ D B E=tan∠DPM,进而得出结果.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图(1),E是直线AB、CD内部一点,AB∥CD,连接EA、ED.
(1)探究:
①若∠A=30°,∠D=40°,则∠AED等于多少度?
②若∠A=20°,∠D=60°,则∠AED等于多少度?
③在图(1)中∠AED、∠EAB、∠EDC有什么数量关系,并证明你的结论.
(2)拓展:如图(2),射线FE与矩形ABCD的边AB交于点E,与边CD交于点F,①②③④分别是被射线FE隔开的四个区域(不含边界,其中③④位于直线AB的上方),P是位于以上四个区域上点,猜想:∠PEB、∠PFC、∠EPF之间的关系.(不要求证明)

-
科目: 来源: 题型:
查看答案和解析>>【题目】解方程(组)
(1)11x﹣3=x+2
(2)

(3)
(4)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,双曲线y=
经过点A(1,2),过点A作y轴的垂线,垂足为B,交双曲线y=﹣
于点C,直线y=m(m≠0)分别交双曲线y=﹣
、y=
于点P、Q.
(1)求k的值;
(2)若△OAP为直角三角形,求点P的坐标;
(3)△OCQ的面积记为S△OCQ , △OAP的面积记为S△OAP,试比较S△OCQ与S△OAP的大小(直接写出结论). -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,某中学有一块四边形的空地ABCD,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问学校需要投入多少资金买草皮?

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知抛物线y=ax2+bx+c与x轴交于A,B两点,顶点C的纵坐标为-2,现将抛物线向右平移2个单位,得到抛物线y=a1x2+b1x+c1 , 则下列结论正确的是 . (写出所有正确结论的序号)①b>0;②a-b+c<0;③阴影部分的面积为4;④若c=-1,则b2=4a.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,平行四边形ABCD中,∠B=30°,AB≠BC ,将△ABC沿AC翻折至△AB′C ,连结B ′D. 若
,∠AB ′D=75°,则BC= . 
相关试题