【题目】如图,四边形ABCD是边长为1的正方形,且DE=
,△ABF是△ADE的旋转图形
![]()
(1)旋转中心是哪一点?
(2)旋转了多少度?
(3)AF的长度是多少?
(4)如果连结EF,那么△AEF是怎样的三角形?
参考答案:
【答案】(1)旋转中心是点A;(2)顺时针旋转90°;(3)
.(4)等腰直角三角形.
【解析】试题(1)、(2)观察图形,由△ADE到△ABF,可得出旋转中心,旋转角;
(3)根据对应边AE=AF,FB=DE=
,在Rt△ABF中,使用勾股定理计算AF;
(4)根据旋转的性质,得到三角形中的边、角之间的关系,进行判断.
试题解析:观察图形,由△ADE到△ABF的旋转可知:
(1)旋转中心是点A;
(2)顺时针旋转90°;
(3)由旋转可知BF=DE=
.
由勾股定理得:AF=
.
(4)等腰直角三角形.
由旋转可知;AE与AF是对应边,
∴AE=AF,∠EAF=90°,
则△AEF是等腰直角三角形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,﹣1),B(1,﹣2),C(3,﹣3).
(1)将△ABC向上平移4个单位长度得到△A1B1C1,请画出△A1B1C1.
(2)请画出与△ABC关于y轴对称的△A2B2C2.
(3)请写出A1、A2的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】(本题12分)某乒乓球馆使用发球机进行辅助训练,出球口在桌面中线端点A处的正上方,假设每次发出的乒乓球的运动路线固定不变,且落在中线上,在乒乓球运行时,设乒乓球与端点A的水平距离为
(米),与桌面的高度为
(米),运行时间为
(秒),经多次测试后,得到如下部分数据:
(秒)0
0.16
0.2
0.4
0.6
0.64
0. 8
…
(米)0
0.4
0.5
1
1.5
1.6
2
…
(米)0.25
0.378
0.4
0.45
0.4
0.378
0.25
…
(1)当
为何值时,乒乓球达到最大高度?(2)乒乓球落在桌面时,与端点A的水平距离是多少?
(3)乒乓球落在桌面上弹起后,
与
满足
①用含
的代数式表示
;②球网高度为0.14米,球桌长(1.4×2)米,若球弹起后,恰好有唯一的击球点,可以将球沿直线扣杀到点A,求
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】滨海长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y(元)是行李质量x(kg)的一次函数,已知行李质量为20kg时需付行李费2元,行李质量为50kg时需付行李费8元.
(1)当行李的质量x超过规定时,求y与x之间的函数表达式.
(2)求旅客最多可免费携带行李的质量.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,使L,M,D在AK的同旁,连接BK和DM,试用旋转的思想说明线段BK与DM的关系.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB=AC=AD,AD∥BC,
(1)求证:BD平分∠ABC;
(2)若∠C=78°,求∠D的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,
D为AB边上一点.
(1)求证:△ACE≌△BCD
(2)若AD=6,BD=8,求DE的长.

相关试题