【题目】如图,已知AB是⊙O的直径,AC是弦,直线EF经过点C,AD⊥EF于点D,∠DAC=∠BAC.
![]()
(1)求证:EF是⊙O的切线;
(2)若⊙O的半径为2,∠ACD=30°,求图中阴影部分的面积.
参考答案:
【答案】(1)见解析;(2)![]()
【解析】
(1)连接OC,由OA=OC,利用等边对等角得到∠OAC=∠OCA,由∠DAC=∠BAC,等量代换得到一对内错角相等,得到AD与OC平行,由AD垂直于EF,得到OC垂直于EF,即可得到EF为圆O的切线;
(2)由∠ACD的度数求出∠OCA为60°,确定出三角形AOC为等边三角形,由半径为2求出AC的长,在直角三角形ACD中,由30度所对的直角边等于斜边的一半求出AD的长,再利用勾股定理求出CD的长,由扇形AOC面积减去三角形AOC面积求出弓形的面积,再由三角形ACD面积减去弓形面积即可求出阴影部分面积.
(1)连接OC,
![]()
∵OA=OC,
∴∠OAC=∠OCA,
∵∠DAC=∠BAC,
∴∠DAC=∠OCA,
∴AD∥OC,
∵AD⊥EF,
∴OC⊥EF,
则EF为圆O的切线;
(2)∵∠ACD=30°,∠ADC=90°,
∴∠CAD=∠OCA=60°,
∴△AOC为等边三角形,
∴AC=OC=OA=2,
在Rt△ACD中,∠ACD=30°,
∴AD=
AC=1,根据勾股定理得:CD=
,
∴S阴影=S△ACD-(S扇形AOC-S△AOC)=
×1×
-(
)=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,用同样规格的黑白两色正方形瓷砖铺设长方形地面,观察下列图形,探究并解答问题:

(1)在第4个图中,共有白色瓷砖______块;在第
个图中,共有白色瓷砖_____块;(2)试用含
的代数式表示在第
个图中共有瓷砖的块数;(3)如果每块黑瓷砖35元,每块白瓷砖50元,当
时,求铺设长方形地面共需花多少钱购买瓷砖? -
科目: 来源: 题型:
查看答案和解析>>【题目】对于一个函数,如果它的自变量 x 与函数值 y 满足:当1≤x≤1 时,1≤y≤1,则称这个函数为“闭 函数”.例如:y=x,y=x 均是“闭函数”. 已知 y ax2 bx c(a0) 是“闭函数”,且抛物线经过点 A(1,1)和点 B(1,1),则 a 的取值范围是______________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(10分)如图,在平面直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴交于点M.

(1)求此抛物线的解析式和对称轴;
(2)在此抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)连接AC,在直线AC下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】己知:如图1,⊙O的半径为2, BC是⊙O的弦,点A是⊙O上的一动点。


图1 图2
(1)当△ABC的面积最大时,请用尺规作图确定点A位置(尺规作图只保留作图痕迹, 不需要写作法);
(2)如图2,在满足(1)条件下,连接AO并延长交⊙O于点D,连接BD并延长交AC 的延长线于点E,若∠BAC=45° ,求AC2+CE2的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】列分式方程解应用题:今年植树节,某校师生到距学校20千米的公路旁植树,一班师生骑自行车先走,走了16千米后,二班师生乘汽车出发,结果同时到达.已知汽车的速度比自行车的速度每小时快60千米,求两种车的速度各是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,函数y=x的图象与函数y=
(x>0)的图象相交于点P(2,m).(1)求m,k的值;
(2)直线y=4与函数y=x的图象相交于点A,与函数y=
(x>0)的图象相交于点B,求线段AB长.
相关试题