【题目】如图,在ABCD中,P1、P2是对角线BD的三等分点.求证:四边形APlCP2是平行四边形.
![]()
参考答案:
【答案】见解析
【解析】
由题意可得 BP1=DP2, AB=CD,AB//CD,根据平行线的性质可得∠ABP1=∠CDP2,证明△ABP1≌△CDP2,根据全等三角形的性质可得AP1=CP2,同理可证:CP1=AP2,根据两组对边分别相等的四边形是平行四边形即可得结论.
∵P1,P2是对角线BD的三等分点,ABCD是平行四边形,
∴BP1=DP2, AB=CD,AB//CD,
∴∠ABP1=∠CDP2,
在△ABP1和△CDP2中,
,
∴△ABP1≌△CDP2(SAS),
∴AP1=CP2,
同理可证:CP1=AP2,
∴四边形AP1CP2是平行四边形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,把一块三角板放在直角坐标系第一象限内,其中30°角的顶点A落在y轴上,直角顶点C落在x轴的(
,0)处,∠ACO=60°,点D为AB边上中点,将△ABC沿x轴向右平移,当点A落在直线y=x﹣3上时,线段CD扫过的面积为_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,O为原点,点A(﹣2,0),点B(0,2),点E,点F分别为OA,OB的中点.若正方形OEDF绕点O顺时针旋转,得正方形OE′D′F′,记旋转角为α.

(1)如图①,当α=90°时,求AE′,BF′的长;
(2)如图②,当α=135°时,求证AE′=BF′,且AE′⊥BF′;
(3)若直线AE′与直线BF′相交于点P,求点P的纵坐标的最大值(直接写出结果即可).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,若果∠1=∠2,那么添加下列任何一个条件:(1)
,(2)
,(3)∠B=∠D,(4)∠C=∠AED, 其中能判定△ABC∽△ADE的个数为
A. 1 B. 2 C. 3 D. 4
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,在AD上截取AE=AB,连接BE,EO,并求∠BEO的角度(要求:尺规作图,保留痕迹,不写作法)

-
科目: 来源: 题型:
查看答案和解析>>【题目】为推动阳光体育活动的广泛开展,引导学生积极参加体育锻炼,学校准备购买一批运动鞋供学生借用.现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据图中提供的信息,解答下列问题:

(1)本次接受随机抽样调查的学生人数为 人,图①中的m的值为 ,图①中“38号”所在的扇形的圆心角度数为 ;
(2)本次调查获取的样本数据的众数是 ,中位数是 ;
(3)根据样本数据,若学校计划购买200双运动鞋,建议购买36号运动鞋多少双?
-
科目: 来源: 题型:
查看答案和解析>>【题目】某水果生产基地,某天安排30名工人采摘枇杷或草莓(每名工人只能做其中一项工作),并且每人每天摘0.4吨枇杷或0.3吨草莓,当天的枇杷售价每吨2000元,草莓售价每吨3000元,设安排其中x名工人采摘枇杷,两种水果当天全部售出,销售总额达y元.
(1)求y与x之间的函数关系式;
(2)若要求当天采摘枇杷的数量不少于草莓的数量,求销售总额的最大值.
相关试题