【题目】如图,∠AOB=45,∠AOB内有一定点P,且OP=10.在OA上有一动点Q,OB上有一动点R.若ΔPQR周长最小,则最小周长是()
![]()
A. 10 B.
C. 20 D. ![]()
参考答案:
【答案】B
【解析】如图,作点P关于OA的对称点
,关于OB的对称点
,
![]()
连接
与OA、OB分别相交于点Q、R,
所以,PQ=
Q,PR=
R,
所以,△PQR的周长=PQ+QR+PR=
Q+QR+
R=
,
由两点之间线段最短得,此时△PQR周长最小,
连接
O、
O,则∠AOP=∠AO
,O
=OP,∠BOP=∠BO
,O
=OP,
所以,O
=O
=OP=10,∠
O
=2∠AOB=2×45°=90°,
所以,△
O
为等腰直角三角,
所以,
=
O
=10
,
即△PQR最小周长是10
.
故选B.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某商店经营儿童玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是200件,而销售单价每上涨2元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时,月销售利润为y元.
(1)求y与x的函数关系式并直接写出自变量x的取值范围.
(2)每件玩具的售价定为多少元时,月销售利润恰为2280元?
(3)每件玩具的售价定为多少元时,月销售利润达到最大?最大为多少元? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠C=90°,BC=8,AC=6,将△ABC沿AE折叠 使点C恰好落在AB边上的点F处.求BE的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,平面直角坐标系中,等腰直角三角形的直角边BC在x轴正半轴上滑动,点C的坐标为(t,0),直角边AC=4,经过O,C两点做抛物线y1=ax(x﹣t)(a为常数,a>0),该抛物线与斜边AB交于点E,直线OA:y2=kx(k为常数,k>0)

(1)填空:用含t的代数式表示点A的坐标及k的值:A , k=;
(2)随着三角板的滑动,当a=
时:
①请你验证:抛物线y1=ax(x﹣t)的顶点在函数y=
的图象上;
②当三角板滑至点E为AB的中点时,求t的值;
(3)直线OA与抛物线的另一个交点为点D,当t≤x≤t+4,|y2﹣y1|的值随x的增大而减小,当x≥t+4时,|y2﹣y1|的值随x的增大而增大,求a与t的关系式及t的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】将△ABC绕O点顺时针旋转50°得△A1B1C1(A、B分别对应A1、B1),则直线AB与直线A1B1的夹角(锐角)为( )
A.130°
B.50°
C.40°
D.60° -
科目: 来源: 题型:
查看答案和解析>>【题目】已知抛物线C的解析式为y=ax2+bx+c,则下列说法中错误的是( )
A.a确定抛物线的形状与开口方向
B.若将抛物线C沿y轴平移,则a,b的值不变
C.若将抛物线C沿x轴平移,则a的值不变
D.若将抛物线C沿直线l:y=x+2平移,则a、b、c的值全变 -
科目: 来源: 题型:
查看答案和解析>>【题目】已知二次函数的解析式为y=ax2+bx+c(a、b、c为常数,a≠0),且a2+ab+ac<0,下列说法:
①b2﹣4ac<0;
②ab+ac<0;
③方程ax2+bx+c=0有两个不同根x1、x2 , 且(x1﹣1)(1﹣x2)>0;
④二次函数的图象与坐标轴有三个不同交点,
其中正确的个数是( )
A.1
B.2
C.3
D.4
相关试题