【题目】如图,在正方形ABCD中,BD为对角线,点P从A出发,沿射线AB运动,连接PD,过点D作DE⊥PD,交直线BC于点E.![]()
(1)探究发现:
当点P在线段AB上时(如图1),BP+CE=BD;
(2)数学思考:
当点P在线段AB的延长线上时(如图2),猜想线段BP、CE,BD之间满足的关系式,并加以证明;
(3)拓展应用:
若直线PE分别交线段BD、CD于点M、N,PM=
,EN=
,直接写出PD的长.
参考答案:
【答案】
(1)![]()
(2)解:CE﹣BP=
BD;
理由:∵△PAD≌△ECD,
∴CE=AP,
∴CE﹣BP=AP﹣BP=AB=
BD;
(3)解:①当P在线段AB上时,
如图1所示,在BC上取一点G使得BG=BP,连接MG、NG,
![]()
∵△APD≌△CED,
∵AP=CE,PD=ED,
∴△PED是等腰直角三角形,
∴AB=BC=AP+BP=BG+CG,
∴CG=CE,
∴可证△NCG≌△NCE,
∴NG=NE,∠NGC=∠NEC,
∵∠PBM=∠GBM=45°,BP=BG,BM=BM,
∴△BPM≌△BGM
∴PM=GM,∠MGB=∠MPB,
又∠NEC+∠MPB=90°,
∴∠NGC+∠MGB=90°,
∴∠MGN=90°,
∴MN=
=2
,
∴PE=PM+MN+EN=
+2
+
=3
+
,
∴PD=
PE=3+
;
②当P在AB延长线上时,
如图2所示,延长CB至G,使得CG=CE,连接MG、NG, ![]()
∵AP=CE,
∴CE﹣BC=CG﹣BC=AP﹣AB=BP=BG,
同①可证△△BMG≌△BMP,△CNG≌△CNE,
∴PM=GM,GN=EN,∠BGM=∠BPM=90°+∠CEN=90°+CGN,
∴∠CGN=∠BGM﹣90°=∠BGM﹣∠MGN,
∴∠MGN=90°,
∴MN=
=2
,
∴PN=MN﹣PM=2
﹣
=
,
∴PE=PN+EN=
+
,
∴PD=
PE=1+
,
∴PD的长为3+
或1+
.
【解析】证明:(1)∵四边形ABCD是正方形,
∴∠A=∠ADC=∠BCD=∠DCE=90°,AD=CD,
∵DE⊥PD,
∴∠ADC=∠PDE=90°,
∴∠ADP=90°﹣∠PDC=∠CDE,
在△PAD与△ECD中,
,
∴△PAD≌△ECD
∴AP=CE,
∴BP+CE=BP+AP=AB=
BD;
所以答案是:
;
【考点精析】根据题目的已知条件,利用正方形的性质的相关知识可以得到问题的答案,需要掌握正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,∠A=36°,AB=AC,BD平分∠ABC,DE∥BC,则图中等腰三角形的个数( )

A. 1个 B. 3个 C. 4个 D. 5个
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线AB、CD相交于点O,∠BOM=90°,∠DON=90°.
(1)若∠COM=∠AOC,求∠AOD的度数;
(2)若∠COM=
∠BOC,求∠AOC和∠MOD.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求证:CD⊥AB

-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系xOy中,直线a:y=2x﹣6,和直线b:y=﹣
x+4相交于点H,分别与x、y轴交于点A、B、C、D,点P在x轴上,过点P作x轴的垂线,分别与直线a、b交于点E、F.
(1)求点H的坐标;
(2)判断直线a、b的位置关系,并说明理由;
(3)设点P的横坐标为m,当m为何值时,以D、E、F、O为顶点的四边形是
平行四边形,说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】某电视机厂生产甲、乙、丙三种不同型号的电视机,出厂价分别为1200元,2000元,2200元.某商场同时从该厂购进其中两种不同型号的电视机共50台,正好用去80000元.
(1)该商场有几种进货方案?(写出演算步骤)
(2)若该商场销售甲、乙、丙种电视机每台可分别获利200元,250元,300元,如何进货可使销售时获利最大?最大利润是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形ABCD中,BC=2AB,对角线相交于O,过C点作CE⊥BD交BD于E点,H为BC中点,连接AH交BD于G点,交EC的延长线于F点,下列5个结论:①EH=AB;②∠ABG=∠HEC;③△ABG≌△HEC;④S△GAD=S四边形GHCE,⑤CF=BD.正确的有( )个.

A. 1 B. 2 C. 3 D. 4
相关试题