【题目】如图,将一条长为60cm的卷尺铺平后折叠,使得卷尺自身的一部分重合,然后在重合部分(阴影处)沿与卷尺边垂直的方向剪一刀,此时卷尺分为了三段,若这三段长度由短到长的比为1:2:3,则折痕对应的刻度的可能性有 ( )
![]()
A. 4种 B. 5种 C. 6种 D. 7种
参考答案:
【答案】A
【解析】解:∵三段长度由短到长的比为1:2:3,∴三段长度分别为:10cm,20cm,30cm.
①当剪切处右边上部分的长度为10cm,剪切处左边的卷尺为20cm时,折痕处为:10+20÷2=20cm;
②当剪切处右边上部分的长度为10cm,剪切处左边的卷尺为30cm时,折痕处为:10+30÷2=25cm;
③当剪切处右边上部分的长度为20cm,剪切处左边的卷尺为10cm时,折痕处为:20+10÷2=25cm;
④当剪切处右边上部分的长度为20cm,剪切处左边的卷尺为30cm时,折痕处为:20+30÷2=35cm;
⑤当剪切处右边上部分的长度为30cm,剪切处左边的卷尺为10cm时,折痕处为:30+10÷2=35cm;
⑥当剪切处右边上部分的长度为30cm,剪切处左边的卷尺为20cm时,折痕处为:30+20÷2=40cm;
综上所述:折痕对应的刻度有4种可能.
故选A.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知坐标系中点A(2,-1),B(7,-1),C(3,-3).
(1)判定△ABC的形状;
(2)设△ABC关于x轴的对称图形是△A1B1C1,若把△A1B1C1的各顶点的横坐标都加2.纵坐标不变,则△A1B1C1的位置发生什么变化?若最终位置是△A2B2C2,求C2点的坐标;
(3)试问在x轴上是否存在一点P,使PC-PB最大,若存在,求出PC-PB的最大值及P点坐标;若不存在,说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小丽做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:
摸球的次数n
100
200
300
500
800
1000
3000
摸到白球的次数m
63
124
178
302
481
599
1803
摸到白球的频率

0.63
0.62
0.593
0.604
0.601
0.599
0.601
(1)请估计:当实验次数为10000次时,摸到白球的频率将会接近 ;(精确到0.1)
(2)假如由你摸球一次,你摸到白球的概率P(摸到白球)= ;
(3)盒子中有黑球 个.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在下列条件中,①∠A+∠B=∠C; ②∠A:∠B:∠C=1:2:3; ③∠A=
∠B=
∠C;④∠A=∠B=2∠C; ⑤∠A=2∠B=3∠C,能确定△ABC为直角三角形的条件有( )
A. 2个 B. 3个 C. 4个 D. 5个
-
科目: 来源: 题型:
查看答案和解析>>【题目】在等腰
和等腰
中,斜边
中点
也是
的中点,
,
.
(
)如图,则
与
的关系是__________.(
)将
绕点
顺时针旋转
,请画出图形井求
的值.(
)将
绕点
逆时针旋转,角度为
,请判断(
)的结论是否仍然成立,若成立请证明,若不成立请画图说明. -
科目: 来源: 题型:
查看答案和解析>>【题目】在一个不透明的口袋里装有若干个相同的红球,为了估计袋中红球的数量,某学习小组做了摸球实验,他们将30个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出一个球并记下颜色,再把它放回袋中,不断重复.下表是几次活动汇总后统计的数据:
摸球的次数s
150
200
500
900
1000
1200
摸到白球的频数n
51
64
156
275
303
361
摸到白球的频率

0.34
0.32
0.312
0.306
0303
0.301
(1)请估计:当次数s很大时,摸到白球的频率将会接近 ;假如你去摸一次,你摸到白球的概率是 (精确到0.1).
(2)试估算口袋中红球有多少只?
(3)解决了上面的问题后请你从统计与概率方面谈一条启示.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D为圆心,以大于
的长为半径在AD的两侧作弧,交于两点M、N;第二步,连结MN,分别交AB、AC于点E、F;第三步,连结DE、DF..若BD=6,AF=4,CD=3,则BE的长是( )
A. 2 B. 4 C. 6 D. 8
相关试题