【题目】在一个不透明的口袋里装有若干个相同的红球,为了估计袋中红球的数量,某学习小组做了摸球实验,他们将30个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出一个球并记下颜色,再把它放回袋中,不断重复.下表是几次活动汇总后统计的数据:
摸球的次数s | 150 | 200 | 500 | 900 | 1000 | 1200 |
摸到白球的频数n | 51 | 64 | 156 | 275 | 303 | 361 |
摸到白球的频率 | 0.34 | 0.32 | 0.312 | 0.306 | 0303 | 0.301 |
(1)请估计:当次数s很大时,摸到白球的频率将会接近 ;假如你去摸一次,你摸到白球的概率是 (精确到0.1).
(2)试估算口袋中红球有多少只?
(3)解决了上面的问题后请你从统计与概率方面谈一条启示.
参考答案:
【答案】(1)0.3;0.7(2)估计口袋中红球有70只;(3)用概率可以估计未知物体的数目
【解析】试题分析:(1)从表中的统计数据可知,摸到白球的频率稳定在0.3左右,而摸到红球的概率为1﹣0.3=0.7;
(2)根据红球的概率公式得到相应方程求解即可;
(3)言之有理即可.
试题解析:解:(1)0.3,1﹣0.3=0.7;
(2)估算口袋中红球有x只,由题意得0.7=
,解之得x=70,∴估计口袋中红球有70只;
(3)用概率可以估计未知物体的数目.(或者试验次数很大时事件发生的频率作为概率的近似值)
(只要能从概率方面说的合理即可)
-
科目: 来源: 题型:
查看答案和解析>>【题目】在下列条件中,①∠A+∠B=∠C; ②∠A:∠B:∠C=1:2:3; ③∠A=
∠B=
∠C;④∠A=∠B=2∠C; ⑤∠A=2∠B=3∠C,能确定△ABC为直角三角形的条件有( )
A. 2个 B. 3个 C. 4个 D. 5个
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将一条长为60cm的卷尺铺平后折叠,使得卷尺自身的一部分重合,然后在重合部分(阴影处)沿与卷尺边垂直的方向剪一刀,此时卷尺分为了三段,若这三段长度由短到长的比为1:2:3,则折痕对应的刻度的可能性有 ( )

A. 4种 B. 5种 C. 6种 D. 7种
-
科目: 来源: 题型:
查看答案和解析>>【题目】在等腰
和等腰
中,斜边
中点
也是
的中点,
,
.
(
)如图,则
与
的关系是__________.(
)将
绕点
顺时针旋转
,请画出图形井求
的值.(
)将
绕点
逆时针旋转,角度为
,请判断(
)的结论是否仍然成立,若成立请证明,若不成立请画图说明. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D为圆心,以大于
的长为半径在AD的两侧作弧,交于两点M、N;第二步,连结MN,分别交AB、AC于点E、F;第三步,连结DE、DF..若BD=6,AF=4,CD=3,则BE的长是( )
A. 2 B. 4 C. 6 D. 8
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,
为线段
上一动点,分别过点
、
作
,
,连接
、
,已知
,
,
,设
.(1)用含
的代数式表示
的长;(2)请问点
在什么位置时,
的值最小,求出这个最小值;(3)根据(2)中的规律和结论,构图求出代数式
的最小值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,某拦水大坝的横断面为梯形ABCD,AE、DF为梯形的高,其中迎水坡AB的坡角α=45°,坡长AB=
米,背水坡CD的坡度i=1:
(i为DF与FC的比值),则背水坡CD的坡长为_______米.
相关试题