【题目】如图
,将菱形纸片
沿对角线
剪开,得到
和
,固定
,并把
与
叠放在一起.
![]()
操作:如图
,将
的顶点
固定在
的
边上的中点处,
绕点
在
边上方左右旋转,设旋转时
交
于点
(
点不与
点重合),
交
于点
(
点不与
点重合).
求证:![]()
操作:如图
,
的顶点
在
的
边上滑动(
点不与
、
点重合),且
始终经过点
,过点
作
,交
于点
,连接
.
探究:
________.请予证明.
参考答案:
【答案】(1)证明见解析;(2)BD,证明见解析.
【解析】
(1)根据菱形的性质以及相似三角形的判定得出△BFH∽△DGF,即可得出答案;
(2)利用已知以及平行线的性质证明△ABF≌△ADG,即可得出FD+DG的关系.
(1)∵将菱形纸片AB(E)CD(F)沿对角线BD(EF)剪开,
∴∠B=∠D,
∵将△ECF的顶点F固定在△ABD的BD边上的中点处,△ECF绕点F在BD边上方左右旋转,
∴BF=DF,
∵∠HFG=∠B,
又∵∠HFD=∠HFG+∠GFD=∠B+∠BHF
∴∠GFD=∠BHF,
∴△BFH∽△DGF,
∴
,
∴BHGD=BF2;
(2)∵AG∥CE,
∴∠FAG=∠C,
∵∠CFE=∠CEF,
∴∠AGF=∠CFE,
∴AF=AG,
∵∠BAD=∠C,
∴∠BAF=∠DAG,
又∵AB=AD,
∴△ABF≌△ADG,
∴FB=DG,
∴FD+DG=BD,
故答案为:BD.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知
为等边三角形,点
为直线
上的一动点(点
不与
、
重合),以
为边作菱形
(
、
、
、
按逆时针排列),使
,连接
.
如图
,当点
在边
上时,求证:①
;②
;
如图
,当点
在边
的延长线上且其他条件不变时,结论
是否成立?若不成立,请写出
、
、
之间存在的数量关系,并说明理由;
如图
,当点
在边
的延长线上且其他条件不变时,补全图形,并直接写出
、
、
之间存在的数量关系.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在菱形
中,
,
,过点
作
于点
,
于点
.
如图
,连接
分别交
、
于点
、
,求证:
;
如图
,将
以点
为旋转中心旋转,其两边
、
分别与直线
、
相交于点
、
,连接
,当
的面积等于
时,求旋转角的大小并指明旋转方向.
-
科目: 来源: 题型:
查看答案和解析>>【题目】观察下列各个等式的规律:
第一个等式:22-12-1=2,第二个等式:32-22-1=4,第三个等式:42-32-1=6…请用上述等式反映出的规律解决下列问题:
(1)直接写出第四个等式;
(2)猜想第n个等式(用含n的式子表示),并证明你猜想的等式是正确的;
(3)直接写出20202-20192-2019=
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABO中,∠BOA=90°,∠BAO=30°.以AB为一边向上作等边三角形ABE,点D为OA垂直平分线上的一点,且AD⊥AB,连接BD、OD、OE.
(1)判断△ADO的形状,并说明理由;
(2)求证:BD=OE
(3)在射线BA上有一动点P,若△PAO为等腰三角形,直接写出∠AOP的度数

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知:∠BAC的平分线与BC的垂直平分线DG相交于点D,DE⊥AB,DF⊥AC,垂足分别为E、F,AB=6,AC=3,则BE=_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】为了看一种图钉落地后钉尖着地的概率有多大,小明作了
次试验,其中钉尖着地的次数是
次.下列说法错误的是( )A. 钉尖着地的频率是

B. 前
次试验结束后,钉尖着地的次数一定是
次C. 钉尖着地的概率大约是

D. 随着试验次数的增加,钉尖着地的频率稳定在

相关试题