【题目】在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,点C为 (-1,0) .如图所示,B点在抛物线y=
x2+
x-2图象上,过点B作BD⊥x轴,垂足为D,且B点横坐标为-3.
(1)求证:△BDC≌△COA;
(2)求BC所在直线的函数关系式;
(3)抛物线的对称轴上是否存在点P,使△ACP是以AC为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.
![]()
参考答案:
【答案】(1)先根据同角的余角相等证得
,又
为等腰直角三角形,可得
.即可证得结论;(2)
;(3)![]()
【解析】试题分析:(1)先根据同角的余角相等证得
,又
为等腰直角三角形,可得
.即可证得结论;
(2)由C点坐标可得BD=CO=1,即可得到B点坐标 设
所在直线的函数关系式为
,根据待定系数法即可求得结果;
(3)先求得抛物线的对称轴为直线
.再分以
为直角边,点
为直角顶点;以
为直角边,点
为直角顶点,两种情况根据一次函数的性质求解即可.
(1)∵
,
,
∴
.
∵
为等腰直角三角形,
∴
.
在
和
中
![]()
∴
(AAS).
(2)∵C点坐标为
,
∴BD=CO=1.
∵B点的横坐标为
,
∴B点坐标为
.
设
所在直线的函数关系式为
,
则有
,解得![]()
∴BC所在直线的函数关系式为
.
(3)存在.
=
,
∴对称轴为直线
.
若以
为直角边,点
为直角顶点,对称轴上有一点
,使
.
∵![]()
∴点
为直线
与对称轴直线
的交点.
由题意得
,解得![]()
∴
.
若以
为直角边,点
为直角顶点,对称轴上有一点
,使
,
过点
作
,交对称轴直线
于点
.
![]()
∵CD=OA,
∴A(0,2).
易求得直线
的解析式为
,
由
得
,∴
.
∴满足条件的点有两个,坐标分别为
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下列推理过程,在括号中填写理由.
如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D.试说明:AC∥DF.

解:∵∠1=∠2(已知),∠1=∠3(______________),
∴∠2=∠3(___________________).
∴__∥__(__________________________________).
∴∠C=∠ABD (________________________________).
又∵∠C=∠D(____________),
∴∠D=∠ABD(等量代换)
∴AC∥DF(______________________________).
-
科目: 来源: 题型:
查看答案和解析>>【题目】在Rt△ABC中,∠C=90°,AB=10,AC=8,点Q在AB上,且AQ=2,过Q做QR⊥AB,垂足为Q,QR交折线AC﹣CB于R(如图1),当点Q以每秒2个单位向终点B移动时,点P同时从A出发,以每秒6个单位的速度沿AB﹣BC﹣CA移动,设移动时间为t秒(如图2).

(1)求△BCQ的面积S与t的函数关系式.
(2)t为何值时,QP∥AC?
(3)t为何值时,直线QR经过点P?
(4)当点P在AB上运动时,以PQ为边在AB上方所作的正方形PQMN在Rt△ABC内部,求此时t的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】杭州市甲、乙两个有名的学校乐团,决定向某服装厂购买同样的演出服.如表是服装厂给出的演出服装的价格表:
购买服装的套数
1~39套(含39套)
40~69套(含69套)
70套及以上
每套服装的价格
80元
70元
60元
经调查:两个乐团共85人(甲乐团人数不少于46人),如果分别各自购买演出服,两个乐团共需花费6500元.请回答以下问题:
(1)如果甲、乙两个乐团联合起来购买服装,那么比各自购买服装最多可以节省多少元?
(2)甲、乙两个乐团各有多少名学生?
(3)现从甲乐团抽调a人,从乙乐团抽调b人(要求从每个乐团抽调的人数不少于5人),去儿童福利院献爱心演出,并在演出后每位乐团成员向儿童们进行“心连心活动”;甲乐团每位成员负责5位小朋友,乙乐团每位成员负责3位小朋友.这样恰好使得福利院65位小朋友全部得到“心连心活动”的温暖.请写出所有的抽调方案,并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】请用反证法证明:如果两个整数的积是偶数,那么这两个整数中至少有一个是偶数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知a+b=-2,ab=-15,则a2+b2=____________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】现有纸片:4张边长为a的止方形,3张边长为b的正方形 (a<b),8张宽为a、长为b的长方形,用这15张纸片重新拼出一个长方形,那么该长方形的长为___________.
相关试题