【题目】如图,在平面直角坐标系xOy中,三角形ABC三个顶点的坐标分别为
、
,
,若把三角形ABC向上平移3个单位长度,再向左平移1个单位长度得到三角形A′B′C′,点A、B、C的对应点分别为A′、B′、C′。
![]()
(1)写出点A′、B′、C′的坐标;
(2)在图中画出平移后的三角形A′B′C′;
(3)三角形A′B′C′的面积为_____________。
参考答案:
【答案】(1)(-3,1),(2,4),(-1,5);(2)详见解析;(3)面积为7;
【解析】
(1)根据三角形ABC的平移规律即可写出点
,
,
的坐标;(2)描出点
,
,
连线即为平移后的三角形
;(2)可将三角形
补成一个矩形,用矩形的面积减去三个直角三角形的面积即可.
解:(1)因为三角形ABC向上平移3个单位长度,再向左平移1个单位长度得到三角形A′B′C′,所以点A、B、C的纵坐标加3,横坐标
即可得到点A′、B′、C′的坐标,故A′、B′、C′的坐标分别为(-3,1),(2,4),(-1,5);
(2)如图即为所求
![]()
(3)如图
![]()
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】在2014年“元旦”前夕,某商场试销一种成本为30元的文化衫,经试销发现,若每件按34元的价格销售,每天能卖出36件;若每件按39元的价格销售,每天能卖出21件.假定每天销售件数y(件)是销售价格x(元)的一次函数.
(1)直接写出y与x之间的函数关系式y= .
(2)在不积压且不考虑其他因素的情况下,每件的销售价格定为多少元时,才能使每天获得的利润P最大?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在△ABC中,∠ACB=2∠B,∠BAC的平分线AO交BC于点D,点H为AO上一动点,过点H作直线l⊥AO于H,分别交直线AB、AC、BC、于点N、E、M.
(1)当直线l经过点C时(如图2),求证:BN=CD;
(2)当M是BC中点时,写出CE和CD之间的等量关系,并加以证明;
(3)请直接写出BN、CE、CD之间的等量关系.


-
科目: 来源: 题型:
查看答案和解析>>【题目】为了丰富学生课余生活,某区教育部分准备在七年级开设兴趣课堂,为了了解学生对音乐、书法、球类、绘画这四个兴趣小组的喜爱情况,在全区进行随机抽样调查,并根据收集的数据绘制了下面两幅统计图(信息不完整),请根据图中提供的信息,解答下面的问题:

(1)此次共调查了多少名同学?
(2)将条形图补充完整,并计算扇形统计图中音乐部分的圆心角的度数;
(3)如果该区七年级共有2000名学生参加这4个课外兴趣小组,则参加绘画兴趣小组的学生有多少名?
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了预防疾病,某单位对办公室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成为正比例,药物燃烧后,y与x成反比例(如图),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量6毫克,请根据题中所提供的信息,解答下列问题:

(1)药物燃烧时,y关于x的函数关系式为________,自变量x的取值范为________;药物燃烧后,y关于x的函数关系式为________.
(2)研究表明,当空气中每立方米的含药量低于1.6毫克时员工方可进办公室,那么从消毒开始,至少需要经过________分钟后,员工才能回到办公室;
(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?
-
科目: 来源: 题型:
查看答案和解析>>【题目】以坐标原点为圆心,1为半径的圆分别交x,y轴的正半轴于点A,B.
(1)如图一,动点P从点A处出发,沿x轴向右匀速运动,与此同时,动点Q从点B处出发,沿圆周按顺时针方向匀速运动.若点Q的运动速度比点P的运动速度慢,经过1秒后点P运动到点(2,0),此时PQ恰好是⊙O的切线,连接OQ.求∠QOP的大小;
(2)若点Q按照(1)中的方向和速度继续运动,点P停留在点(2,0)处不动,求点Q再经过5秒后直线PQ被⊙O截得的弦长.


-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在等边三角形
中,
.射线
,点
从点
出发沿射线
以
的速度运动,同点
从点
出发沿射线
以
的速度运动,设运动时间为
;
(1)连接
,当
经过
边的中点
时,求证:
;(2)求当
为何值,四边形
是平行四边形.
相关试题