【题目】如图,大刚在晚上由灯柱A走向灯柱B,当他走到M点时,发觉他身后影子的顶部刚好接触到灯柱A的底部,当他向前再走12米到N点时,发觉他身前的影子刚好接触到灯柱B的底部,已知大刚的身高是1.6米,两根灯柱的高度都是9.6米,设AM=NB=x米.求:两根灯柱之间的距离.
![]()
参考答案:
【答案】两个路灯之间的距离为18米.
【解析】
根据已知条件易证△AMF∽△ABC,设AM=NB=x米,根据相似三角形的对应边成比例列出方程,解方程求得x的值,即可求得两个路灯之间的距离.
由对称性可知AM=BN,设AM=NB=x米,
∵MF∥BC,
∴△AMF∽△ABC
∴
=
,
∴
=![]()
∴x=3
经检验x=3是原方程的根,并且符合题意.
∴AB=2x+12=2×3+12=18(m).
答:两个路灯之间的距离为18米.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,在△ABC中,D是BC的中点,DE⊥BC,垂足为D,交AB于点E,且BE2﹣EA2=AC2.

(1)求证:∠A=90°;
(2)若AB=8,BC=10,求AE的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知正比例函数y=2x与反比例函数y=
(k>0)的图象交于A、B两点,且点A的横坐标为4,(1)求k的值;
(2)根据图象直接写出正比例函数值小于反比例函数值时x的取值范围;
(3)过原点O的另一条直线l交双曲线y=
(k>0)于P、Q两点(P点在第一象限),若由点A、P、B、Q为顶点组成的四边形面积为224,求点P的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在长方形OABC中,O为平面直角坐标系的原点,点A的坐标为(a,0),点C的坐标为(0,b),且a、b满足
+|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.
(1)a= ,b= ,点B的坐标为 ;
(2)当点P移动3.5秒时,求出点P的坐标;
(3)在移动过程中,若点P到x轴的距离为4个单位长度时,求点P移动的时间.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△ABC中,∠BAC=90°,AB=AC,D、E是BC边上的点,将△ABD绕点A旋转,得到△ACD′.

(1)求∠DAD′的度数。
(2)当∠DAE=45°时,求证:DE=D′E;
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,DE∥AB,EF∥AB,∠BED=∠CEF,

(1)试说明△ABC是等腰三角形,
(2)探索AB+AC与四边形ADEF的周长关系.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB是⊙O的直径,且AB=4,点C在半径OA上(点C与点O、A不重合),过点C作AB的垂线交⊙O于点D,连接OD,过点B作OD的平行线交⊙O于点E,交CD的延长线于点F.
(1)若∠F=30°,请证明E是
的中点;(2)若AC=
,求BEEF的值.
相关试题