【题目】已知:如图,在正方形ABCD中,点Q是CD边的中点,过点Q作AQ⊥PQ交BC于P,(1)证明:△ADQ ∽△QCP;(2)若PC=1,求BP的长.
![]()
参考答案:
【答案】(1)见解析;(2)3.
【解析】
(1)利用同角的余角相等,得∠PQC=∠QAD,即可证明相似,
(2)利用正方形性质和比例式即可求解.
证明:∵AQ⊥PQ,
∴∠PQC+∠AQD=90°
∵∠D=90°,
∴∠QAD+∠AQD=90°
∴∠PQC=∠QAD
又∠C=∠D=90°,
∴△ADQ∽△QCP
(2)∵四边形ABCD为正方形,
∴AD=CD=BC,
∵点Q是CD边的中点,CP=1
∴CQ=DQ=
AD
由(1)得
=
)2=AD
解得:AD=0(舍)或AD=4
∴BC=4
∴BP=BC-CP=4-1=3
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系xOy中,以原点O为圆心的圆过点A(
,0),直线y=kx-2k+3与⊙O交于B、C两点,则弦BC的长的最小值为_______.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在直角三角形△ABC中,∠B=90°,AB=12cm,BC=16cm,点P从A开始沿AB边向点B以2cm/s的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动.P,Q分别从A,B同时出发,当一个动点到达终点则另一动点也随之停止运动.设运动时间为t(s)
(1)求t为何值时,△PBQ为等腰三角形?
(2)是否存在某一时刻t,使点Q在线段AC的垂直平分线上?
(3)点P、Q在运动的过程中,是否存在某一时刻t,直线PQ把△ABC的周长与面积同时分为1:2两部分?若存在,求出t,若不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知⊙O的半径为5,直线l切⊙O于A,在直线l上取点B,AB=4.
(1)请用无刻度的直尺和圆规,过点B作直线m⊥l,交⊙O于C、D(点D在点C的上方);(保留作图痕迹,不要求写作法)
(2)求BC的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某校组织九年级学生参加汉字听写大赛,并随机抽取部分学生成绩作为样本进行分析,绘制成如下的统计表:

成绩x/分
频数
频率
第1段
x<60
2
0.04
第2段
60≤x<70
6
0.12
第3段
70≤x<80
9
b
第4段
80≤x<90
a
0.36
第5段
90≤x≤100
15
0.30
请根据所给信息,解答下列问题:
(1)a=______,b=______;
(2)请补全频数分布直方图;
(3)样本中,部分学生成绩的中位数落在第_______段;
(4)已知该年级有400名学生参加这次比赛,若成绩在90分以上(含90分)的为优,估计该年级成绩为优的有多少人?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为( )

A.
B.
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有2个,若从中随机摸出一个球,这个球是白球的概率为
.(1)求袋子中白球的个数;(请通过列式或列方程解答)
(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)
相关试题