【题目】如图,C为∠AOB的边OA上一点,OC=6,N为边OB上异于点O的一动点,P是线段CN上一点,过点P分别作PQ∥OA交OB于点Q,PM∥OB交OA于点M.![]()
(1)若∠AOB=60°,OM=4,OQ=1,求证:CN⊥OB
(2)当点N在边OB上运动时,四边形OMPQ始终保持为菱形.
①问:
﹣
的值是否发生变化?如果变化,求出其取值范围;如果不变,请说明理由.
②设菱形OMPQ的面积为S1 , △NOC的面积为S2 , 求
的取值范围.
参考答案:
【答案】
(1)
解:(1)过P作PE⊥OA于E,
∵PQ∥OA,PM∥OB,
∴四边形OMPQ为平行四边形,
∴PM=OQ=1,∠PME=∠AOB=60°,
∴PE=PMsin60°=
,ME=
,
∴CE=OC﹣OM﹣ME=
,
∴tan∠PCE=
=
,
∴∠PCE=30°,
∴∠CPM=90°,
又∵PM∥OB,
∴∠CNO=∠CPM=90°,
则CN⊥OB
(2)
解:
①
﹣
的值不发生变化,理由如下:
设OM=x,ON=y,
∵四边形OMPQ为菱形,
∴OQ=QP=OM=x,NQ=y﹣x,
∵PQ∥OA,
∴∠NQP=∠O,
又∵∠QNP=∠ONC,
∴△NQP∽△NOC,
∴
=
,即
=
,
∴6y﹣6x=xy.两边都除以6xy,得
﹣
=
,即
﹣
=
.
②过P作PE⊥OA于E,过N作NF⊥OA于F,
则S1=OMPE,S2=
OCNF,
∴
=
.
∵PM∥OB,
∴∠PMC=∠O,
又∵∠PCM=∠NCO,
∴△CPM∽△CNO,
∴
=
=
,
∴
=
=﹣
(x﹣3)2+
,
∵0<x<6,
则根据二次函数的图象可知,0<
≤
.
![]()
【解析】(1)过P作PE⊥OA于E,利用两组对边平行的四边形为平行四边形得到OMPQ为平行四边形,利用平行四边形的对边相等,对角相等得到PM=OQ=1,∠PME=∠AOB=60°,进而求出PE与ME的长,得到CE的长,求出tan∠PCE的值,利用特殊角的三角函数值求出∠PCE的度数,得到PM于NC垂直,而PM与ON平行,即可得到CN与OB垂直;
(2)
﹣
的值不发生变化,理由如下:设OM=x,ON=y,根据OMPQ为菱形,得到PM=PQ=OQ=x,QN=y﹣x,根据平行得到三角形NQP与三角形NOC相似,由相似得比例即可确定出所求式子的值;
②过P作PE⊥OA于E,过N作NF⊥OA于F,表示出菱形OMPQ的面积为S1 , △NOC的面积为S2 , 得到
,由PM与OB平行,得到三角形CPM与三角形CNO相似,由相似得比例求出所求式子
的范围即可.
【考点精析】关于本题考查的相似三角形的应用,需要了解测高:测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长成比例”的原理解决;测距:测量不能到达两点间的举例,常构造相似三角形求解才能得出正确答案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)甲、乙、丙、丁四人做传球游戏:第一次由甲将球随机传给乙、丙、丁中的某一人,从第二次起,每一次都由持球者将球再随机传给其他三人中的某一人.
(1)求第二次传球后球回到甲手里的概率.(请用“画树状图”或“列表”等方式给出分析过程)
(2)如果甲跟另外n(n≥2)个人做(1)中同样的游戏,那么,第三次传球后球回到甲手里的概率是 -
科目: 来源: 题型:
查看答案和解析>>【题目】已知:平面直角坐标系中,四边形OABC的顶点分别为O(0,0)、A(5,0)、B(m,2)、C(m﹣5,2).
(1)问:是否存在这样的m,使得在边BC上总存在点P,使∠OPA=90°?若存在,求出m的取值范围;若不存在,请说明理由.
(2)当∠AOC与∠OAB的平分线的交点Q在边BC上时,求m的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】一次函数y=
x的图象如图所示,它与二次函数y=ax2﹣4ax+c的图象交于A、B两点(其中点A在点B的左侧),与这个二次函数图象的对称轴交于点C.
(1)求点C的坐标
(2)设二次函数图象的顶点为D.
①若点D与点C关于x轴对称,且△ACD的面积等于3,求此二次函数的关系式;
②若CD=AC,且△ACD的面积等于10,求此二次函数的关系式. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是( )

A.1对
B.2对
C.3对
D.4对 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,则AP的长为

-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)解不等式:

(2)计算:
÷(a+2﹣
)
相关试题