【题目】一次函数y=
x的图象如图所示,它与二次函数y=ax2﹣4ax+c的图象交于A、B两点(其中点A在点B的左侧),与这个二次函数图象的对称轴交于点C.![]()
(1)求点C的坐标
(2)设二次函数图象的顶点为D.
①若点D与点C关于x轴对称,且△ACD的面积等于3,求此二次函数的关系式;
②若CD=AC,且△ACD的面积等于10,求此二次函数的关系式.
参考答案:
【答案】
(1)
解:(1)∵y=ax2﹣4ax+c=a(x﹣2)2﹣4a+c,
∴二次函数图象的对称轴为直线x=2,
当x=2时,y=
x=
,
故点C(2,
)
(2)
解:
①∵点D与点C关于x轴对称,
∴D(2,﹣
,),
∴CD=3,
设A(m,
m)(m<2),
由S△ACD=3得:
×3×(2﹣m)=3,
解得m=0,
∴A(0,0).
由A(0,0)、D(2,﹣
)得:
,
解得:a=
,c=0.
∴y=
x2﹣
x;
②设A(m,
m)(m<2),
过点A作AE⊥CD于E,则AE=2﹣m,CE=
﹣
m,
AC=
=
=
(2﹣m),
∵CD=AC,
∴CD=
(2﹣m),
由S△ACD=10得
×
(2﹣m)2=10,
解得:m=﹣2或m=6(舍去),
∴m=﹣2,
∴A(﹣2,﹣
),CD=5,
当a>0时,则点D在点C下方,
∴D(2,﹣
),
由A(﹣2,﹣
)、D(2,﹣
)得:
,
解得:
,
∴y=
x2﹣
x﹣3;
当a<0时,则点D在点C上方,
∴D(2,
),
由A(﹣2,﹣
)、D(2,
)得:
,
解得
,
∴y=﹣
x2+2x+
.
![]()
【解析】(1)先求出对称轴为x=2,然后求出与一次函数y=
x的交点,即点C的坐标;
(2)①先求出点D的坐标,设A坐标为(m,
m),然后根据面积为3,求出m的值,得出点A的坐标,最后根据待定系数法求出a、c的值,即可求出解析式;
②过点A作AE⊥CD于E,设A坐标为(m,
m),由S△ACD=10,求出m的值,然后求出点A坐标以及CD的长度,然后分两种情况:当a>0,当a<0时,分别求出点D的坐标,代入求出二次函数的解析式.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某区教研部门对本区初二年级的学生进行了一次随机抽样问卷调查,其中有这样一个问题:
老师在课堂上放手让学生提问和表达,
A.从不 B.很少 C.有时 D.常常 E.总是
答题的学生在这五个选项中只能选择一项.如图是根据学生对该问题的答卷情况绘制的两幅不完整的统计图.
根据以上信息,解答下列问题:
(1)该区共有 名初二年级的学生参加了本次问卷调查
(2)请把这幅条形统计图补充完整
(3)在扇形统计图中,“总是”所占的百分比为 -
科目: 来源: 题型:
查看答案和解析>>【题目】(1)甲、乙、丙、丁四人做传球游戏:第一次由甲将球随机传给乙、丙、丁中的某一人,从第二次起,每一次都由持球者将球再随机传给其他三人中的某一人.
(1)求第二次传球后球回到甲手里的概率.(请用“画树状图”或“列表”等方式给出分析过程)
(2)如果甲跟另外n(n≥2)个人做(1)中同样的游戏,那么,第三次传球后球回到甲手里的概率是 -
科目: 来源: 题型:
查看答案和解析>>【题目】已知:平面直角坐标系中,四边形OABC的顶点分别为O(0,0)、A(5,0)、B(m,2)、C(m﹣5,2).
(1)问:是否存在这样的m,使得在边BC上总存在点P,使∠OPA=90°?若存在,求出m的取值范围;若不存在,请说明理由.
(2)当∠AOC与∠OAB的平分线的交点Q在边BC上时,求m的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,C为∠AOB的边OA上一点,OC=6,N为边OB上异于点O的一动点,P是线段CN上一点,过点P分别作PQ∥OA交OB于点Q,PM∥OB交OA于点M.

(1)若∠AOB=60°,OM=4,OQ=1,求证:CN⊥OB
(2)当点N在边OB上运动时,四边形OMPQ始终保持为菱形.
①问:
﹣
的值是否发生变化?如果变化,求出其取值范围;如果不变,请说明理由.
②设菱形OMPQ的面积为S1 , △NOC的面积为S2 , 求
的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是( )

A.1对
B.2对
C.3对
D.4对 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,则AP的长为

相关试题