【题目】如图,在Rt△ABC中,∠ACB=90°,AC=10cm,BC=15cm,点P从A出发沿AC向C点以1厘米/秒的速度匀速移动;点Q从C出发沿CB向B点以2厘米/秒的速度匀速移动.点P、Q分别从起点同时出发,移动到某一位置时所需时间为t秒
![]()
当t = 4时,求线段PQ的长度
(2)当t为何值时,△PCQ是等腰三角形?
(3)当t为何值时,△PCQ的面积等于16cm2?
(4)当t为何值时,△PCQ∽△ACB
参考答案:
【答案】见解析
【解析】试题分析:(1)由于点P从A出发沿AC向C点以1厘米/秒的速度匀速移动,点Q从C出发沿CB向B点以2厘米/秒,而t=4,由此可以用t表示AP、PC、CQ的长度,然后利用勾股定理即可求出PQ的长度;
(2)令PC=CQ,求t的值.
(3)首先用t分别表示CP,CQ的长度,然后利用三角形的面积公式即可列出关于t的方程,解方程即可解决问题;
(4)利用直角三角形的斜边中点的性质可以证明△ABC和△PCQ相似,再根据相似三角形的性质,求得t的值.
试题解析:
(1)当t=4时,
∵点P从A出发沿AC向C点以1厘米/秒的速度匀速移动,点Q从C出发沿CB向B点以2厘米/秒的速度匀速移动,
∴AP=4cm,PC=AC﹣AP=6cm、CQ=2×4=8cm,
∴PQ=
=10cm;
(2)∵AP=t,PC=AC﹣AP=10﹣t、CQ=2t,
当PC=CQ时
10-t=2t
t=
(3)∵AP=t,PC=AC﹣AP=10﹣t、CQ=2t,
∴S△PQC=
PC×CQ=t(10﹣t)=16,
∴t1=2,t2=8,当t=8时,CQ=2t=16>15,
∴舍去,
∴当t=2时,△PQC的面积等于16cm2;
(4)∵点O为AB的中点,∠ACB=90°,
∴OA=OB=OC(直角三角形斜边上中线定理),
∴∠A=∠OCA,
而∠OCA+∠QPC=90°,∠A+∠B=90°,
∴∠B=∠QPC,又∠ACB=∠PCQ=90°,
∴△ABC∽△QPC,
∴
![]()
∴t=2.5s.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】某超市销售有甲、乙两种商品,甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元
(1)若该超市一次性购进两种商品共80件,且恰好用去1 600元,则购进甲商品件,乙商品件;
(2)若该超市要使两种商品共80件的购进费用不超过1 640元,且总利润(利润=售价-进价)不少于600元.请你帮助该超市设计相应的进货方案,并指出使该超市利润最大的方案. -
科目: 来源: 题型:
查看答案和解析>>【题目】下列因式分解正确的是( )
A.x2+xy+x=x(x+y)B.x2﹣4x+4=(x+2)(x﹣2)
C.a2﹣2a+2=(a﹣1)2+1D.x2﹣6x+5=(x﹣5)(x﹣1)
-
科目: 来源: 题型:
查看答案和解析>>【题目】等腰三角形腰长为6cm,一腰上的中线将其周长分成两部分,且两部分的差为3cm,则底边长为______cm.
-
科目: 来源: 题型:
查看答案和解析>>【题目】关于正比例函数y=2x的图象,下列叙述错误的是( )
A. 点(﹣1,﹣2)在这个图象上 B. 函数值y随自变量x的增大而减小
C. 图象关于原点对称 D. 图象经过一、三象限
-
科目: 来源: 题型:
查看答案和解析>>【题目】小昆和小明玩摸牌游戏,游戏规则如下:有3张背面完全相同,牌面标有数字1、2、3的纸牌,将纸牌洗匀后背面朝上放在桌面上,随机抽出一张,记下牌面数字,放回后洗匀再随机抽出一张。

(1)请用画树形图或列表的方法(只选其中一种),
表示出两次抽出的纸牌数字可能出现的所有结果;
(2)若规定:两次抽出的纸牌数字之和为奇数,则小昆获胜;两次抽出的纸牌数字之和为偶数,则小明获胜。这个游戏公平吗?为什么?
-
科目: 来源: 题型:
查看答案和解析>>【题目】某县筹备20周年县庆,园林部门决定利用3 490盆甲种花卉和2 950盆乙种花卉搭配A,B两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉80盆,乙种花卉40盆;搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.
(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来;
(2)若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(1)中哪种方案成本最低,最低成本是多少元?
相关试题