【题目】已知:线段AB=40cm.
(1)如图①,点P沿线段AB自点A向点B以3厘米/秒运动,同时点Q线段BA自B点向点A以5厘米/秒运动,问经过几秒后P、Q相遇?
(2)几秒钟后,P、Q相距16厘米?
(3)如图②,AO=PO=8厘米,∠POB=40°,点P绕点O以20度/秒的速度顺时针旋转一周停止,同时点Q沿直线BA自B点向点A运动,假若P、Q两点能相遇,求Q运动的速度.
![]()
参考答案:
【答案】(1)经过5秒钟后P、Q相遇;(2)经过3秒钟或7秒钟后,P、Q相距16cm;(3)点Q运动的速度为12cm/s或
cm/s.
【解析】
(1)根据相遇时,点P和点Q的运动的路程和等于AB的长列方程即可求解;
(2)设经过xs,P、Q两点相距10cm,分相遇前和相遇后两种情况建立方程求出其解即可;
(3)由于点P,Q只能在直线AB上相遇,而点P旋转到直线AB上的时间分两种情况,所以根据题意列出方程分别求解.
(1)设经过ts后,点P、Q相遇,
依题意,有3t+5t=40,
解得t=5.
答:经过5秒钟后P、Q相遇;
(2)设经过xs,P、Q两点相距16cm,由题意得
3x+5x+16=40或3x+5x16=40,
解得:x=3或x=7.
答:经过3秒钟或7秒钟后,P、Q相距16cm;
(3)点P,Q只能在直线AB上相遇,
则点P旋转到直线AB上的时间为40÷20=2s或(40+180)÷20=11s.
设点Q的速度为ycm/s,则有2y=4016,解得y=12或11y=40,解得
答:点Q运动的速度为12cm/s或
cm/s.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图:抛物线
与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.点P为线段BC上一点,过点P作直线ι⊥x轴于点F,交抛物线
于点E.
(1)求A、B、C三点的坐标;
(2)当点P在线段BC上运动时,求线段PE长的最大值;
(3)当PE取最大值时,把抛物线
向右平移得到抛物线
,抛物线
与线段BE交于点M,若直线CM把△BCE的面积分为1:2两部分,则抛物线
应向右平移几个单位长度可得到抛物线
? -
科目: 来源: 题型:
查看答案和解析>>【题目】(1)如图1,把△ABC沿DE折叠,使点A落在点A’处,试探索∠1+∠2与∠A的关系.(证明).



(2)如图2,BI平分∠ABC,CI平分∠ACB,把△ABC折叠,使点A与点I重合,若∠1+∠2=130°,求∠BIC的度数;
(3)如图3,在锐角△ABC中,BF⊥AC于点F,CG⊥AB于点G,BF、CG交于点H,把△ABC折叠使点A和点H重合,试探索∠BHC与∠1+∠2的关系,并证明你的结论.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图:为了测量某棵树的高度,小刚用长为2m的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点,此时,竹竿与这一点距离6m,与树相距15m,那么这棵的高度为( )

A.5米
B.7米
C.7.5米
D.21米 -
科目: 来源: 题型:
查看答案和解析>>【题目】已知∠AOB=130°,∠COD=80°,OM,ON分别是∠AOB和∠COD的平分线.
(1)如果OA,OC重合,且OD在∠AOB的内部,如图1,求∠MON的度数;
(2)如果将图1中的∠COD绕点O点顺时针旋转n°(0<n<155),如图2,
①∠MON与旋转度数n°有怎样的数量关系?说明理由;
②当n为多少时,∠MON为直角?
(3)如果∠AOB的位置和大小不变,∠COD的边OD的位置不变,改变∠COD的大小;将图1中的OC绕着O点顺时针旋转m°(0<m<100),如图3,∠MON与旋转度数m°有怎样的数量关系?说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB是⊙O的切线,B为切点,AO的延长线交⊙O于点C,连接BC,如果∠A=30°,AB=2
,那么AC的长等于( )
A.4
B.6
C.4
D.6
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,AD,BC是⊙O的两条互相垂直的直径,点P从点O出发沿图中某一个扇形顺时针匀速运动,设∠APB=y(单位:度),如果y与点P运动的时间x(单位:秒)的函数关系的图象大致如图2所示,那么点P的运动路线可能为( )

A.O→B→A→O
B.O→A→C→O
C.O→C→D→O
D.O→B→D→O
相关试题