【题目】如图,已知点A(﹣1,0),B(3,0),C(0,1)在抛物线y=ax2+bx+c上.
(1)求抛物线解析式;
(2)在直线BC上方的抛物线上求一点P,使△PBC面积为1;
(3)在x轴下方且在抛物线对称轴上,是否存在一点Q,使∠BQC=∠BAC?若存在,求出Q点坐标;若不存在,说明理由.
![]()
参考答案:
【答案】(1)抛物线的解析式为y=﹣
x2+
x+1;(2)点P的坐标为(1,
)或(2,1);(3)存在,理由见解析.
【解析】
(1)设抛物线的解析式为y=a(x+1)(x﹣3),将C(0,1)代入求得a的值即可;
(2)过点P作PD⊥x,交BC与点D,先求得直线BC的解析式为y=﹣
x+1,设点P(x,﹣
x2+
x+1),则D(x,﹣
x+1),然后可得到PD与x之间的关系式,接下来,依据△PBC的面积为1列方程求解即可;
(3)首先依据点A和点C的坐标可得到∠BQC=∠BAC=45°,设△ABC外接圆圆心为M,则∠CMB=90°,设⊙M的半径为x,则Rt△CMB中,依据勾股定理可求得⊙M的半径,然后依据外心的性质可得到点M为直线y=﹣x与x=1的交点,从而可求得点M的坐标,然后由点M的坐标以及⊙M的半径可得到点Q的坐标.
(1)设抛物线的解析式为y=a(x+1)(x﹣3),将C(0,1)代入得﹣3a=1,解得:a=﹣
,
∴抛物线的解析式为y=﹣
x2+
x+1;
(2)过点P作PD⊥x,交BC与点D,
设直线BC的解析式为y=kx+b,则
,解得:k=﹣
,
∴直线BC的解析式为y=﹣
x+1,
设点P(x,﹣
x2+
x+1),则D(x,﹣
x+1),
∴PD=(﹣
x2+
x+1)﹣(﹣
x+1)=﹣
x2+x,
∴S△PBC=
OBDP=
×3×(﹣
x2+x)=﹣
x2+
x,
又∵S△PBC=1,
∴﹣
x2+
x=1,整理得:x2﹣3x+2=0,解得:x=1或x=2,
∴点P的坐标为(1,
)或(2,1);
(3)存在.
∵A(﹣1,0),C(0,1),
∴OC=OA=1,
∴∠BAC=45°,
∵∠BQC=∠BAC=45°,
∴点Q为△ABC外接圆与抛物线对称轴在x轴下方的交点,
设△ABC外接圆圆心为M,则∠CMB=90°,
设⊙M的半径为x,则Rt△CMB中,由勾股定理可知CM2+BM2=BC2,即2x2=10,
解得:x=
(负值已舍去),
∵AC的垂直平分线的为直线y=﹣x,AB的垂直平分线为直线x=1,
∴点M为直线y=﹣x与x=1的交点,即M(1,﹣1),
∴Q的坐标为(1,﹣1﹣
).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=-x2+bx+c与x轴相交于A(-1,0),B(5,0)两点.
(1)求抛物线的解析式;
(2)在第二象限内取一点C,作CD垂直x轴于点D,链接AC,且AD=5,CD=8,将Rt△ACD沿x轴向右平移m个单位,当点C落在抛物线上时,求m的值;
(3)在(2)的条件下,当点C第一次落在抛物线上记为点E,点P是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q,使以点B、E、P、Q为顶点的四边形是平行四边形?若存在,请出点Q的坐标;若不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,点 A,B的坐标分别为(0,3),(1,0),△ABC是等腰直角三角形,∠ABC=90°.
(1)图1中,点C的坐标为 ;
(2)如图2,点D的坐标为(0,1),点E在射线CD上,过点B 作BF⊥BE交y轴于点F.
①当点E为线段CD的中点时,求点F的坐标;
②当点E在第二象限时,请直接写出F点纵坐标y的取值范围.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形ABCD中,AB=1,以线段BC、CD上两点P、Q和方形的点A为顶点作正方形的内接等边△APQ,求△APQ的边长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知一次函数y=kx+k+1的图象与一次函数y=﹣x+4的图象交于点A(1,a).

(1)求a、k的值;
(2)根据图象,写出不等式﹣x+4>kx+k+1的解;
(3)结合图形,当x>2时,求一次函数y=﹣x+4函数值y的取值范围;
-
科目: 来源: 题型:
查看答案和解析>>【题目】某公司的午餐采用自助的形式,并倡导员工“适度取餐,减少浪费”该公司共有10个部门,且各部门的人数相同.为了解午餐的浪费情况,从这10个部门中随机抽取了
两个部门,进行了连续四周(20个工作日)的调查,得到这两个部门每天午餐浪费饭菜的重量,以下简称“每日餐余重量”(单位:千克),并对这些数据进行了整理、描述和分析.下面给出了部分信息.
.
部门每日餐余重量的频数分布直方图如下(数据分成6组:
,
,
,
):
.
部门每日餐余重量在
这一组的是:6.1 6.6 7.0 7.0 7.0 7.8
.
部门每日餐余重量如下:1.4 2.8 6.9 7.8 1.9 9.7 3.1 4.6 6.9 10.8 6.9 2.6 7.5 6.9 9.5 7.8 8.4 8.3 9.4 8.8
.
两个部门这20个工作日每日餐余重量的平均数、中位数、众数如下:部门
平均数
中位数
众数

6.4

7.0
/p>6.6
7.2

根据以上信息,回答下列问题:
(1)写出表
中的值;(2)在
这两个部门中,“适度取餐,减少浪费”做得较好的部门是________(填“
”或“
”),理由是____________;(3)结合
这两个部门每日餐余重量的数据,估计该公司(10个部门)一年(按240个工作日计算)的餐余总重量. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在ABCD中,AD>AB,AM、BN、CP、DQ为四个内角的角平分线,P、为AD边上两点,其中AM与DQ相交于E,BN与CP相交于F,AM与BN相交于G,CP与DQ相交于H.

(1)求证:四边形EHFG是矩形.
(2)ABCD满足 时,四边形EHFG为正方形;ABCD满足 时,F点落在AD边上.(与点P、点N重合)
(3)探究矩形EHFG的对角线长度与ABCD的边长之间的数量关系,并证明.
相关试题