【题目】某班学生分两组参加某项活动,甲组有26人,乙组有32人,后来由于活动需要,从甲组抽调了部分学生去乙组,结果乙组的人数是甲组人数的2倍还多1人.从甲组抽调了多少学生去乙组?
【答案】7个人
【解析】
试题设从甲组抽调了
个学生去乙组,根据抽调后乙组的人数是甲组人数的2倍还多1人即可得出关于
的一元一次方程,解之即可得出结论.
试题解析:设从甲组抽出
人到乙组,
答:从甲组抽调了7名学生去乙组
【题型】解答题
【结束】
26
【题目】如图,直线AB和CD交于点O,OE⊥AB,垂足为点O,OP平分∠EOD,∠AOD=144°.
(1)求∠AOC与∠COE的度数;
(2)求∠BOP的度数.
![]()
参考答案:
【答案】(1)∠AOC=36°,∠COE=54°,(2)∠BOP=27°.
【解析】
(1)由邻补角定义,可求得得∠AOC度数,由垂直定义,可得∠AOE=∠BOE=90°,由余角定义可求得∠COE;
(2)由邻补角定义可得∠DOE度数,由OO平分∠DOE,可得∠EOP度数,再由余角定义可求得∠BOP度数.
(1)∵∠AOC+∠AOD=180°,∠AOD=144°,
∴∠AOC=180°-∠AOD=180°-144°=36°,
∵OE⊥AB,
∴∠AOE=∠BOE=90°,
∴∠COE=∠AOE-∠AOC=90°-36°=54°,
(2)∵∠COE+∠DOE=180°,
∴∠DOE=180°-∠COE=180°-54°=126°,
∵OO平分∠DOE,
∴∠EOP=
∠DOE=
×126°=63°,
∴∠BOP=∠BOE-∠EOP=90°-63°=27°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】圆锥纸帽的侧面展开图是一个圆心角为120°,弧长为6π(cm)的扇形纸片,则圆锥形纸帽的侧面积为( )
A.9π cm2
B.18π cm2
C.27π cm2
D.36π cm2 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,⊙O中,点A为
中点,BD为直径,过A作AP∥BC交DB的延长线于点P. 
(1)求证:PA是⊙O的切线;
(2)若
,AB=6,求sin∠ABD的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图(1)是一个六角星的纸板,其中六个锐角都为60°,六个钝角都为120°,每条边都相等,现将该纸板按图(2)切割,并无缝隙无重叠地拼成矩形ABCD.若六角星纸板的面积为9
cm2 , 则矩形ABCD的周长为( ) 
A.18cm
B.8
cm
C.(2
+6)cm
D.(6
+6)cm -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,平面直角坐标系中,O为菱形ABCD的对称中心,已知C(2,0),D(0,﹣1),N为线段CD上一点(不与C、D重合).

(1)求以C为顶点,且经过点D的抛物线解析式;
(2)设N关于BD的对称点为N1 , N关于BC的对称点为N2 , 求证:△N1BN2∽△ABC;
(3)求(2)中N1N2的最小值;
(4)过点N作y轴的平行线交(1)中的抛物线于点P,点Q为直线AB上的一个动点,且∠PQA=∠BAC,求当PQ最小时点Q坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点P是∠AOB外的一点,点Q是点P关于OA的对称点,点R是点P关于OB的对称点,直线QR分别交∠AOB两边OA,OB于点M,N,连结PM,PN,如果∠PMO=33°,∠PNO=70°,求∠QPN的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,AB=13,BC=14.
(1)如图1,AD⊥BC于点D,且BD=5,则△ABC的面积为 ;
(2)在(1)的条件下,如图2,点H是线段AC上任意一点,分别过点A,C作直线BH的垂线,垂足为E,F,设BH=x,AE=m,CF=n,请用含x的代数式表示m+n,并求m+n的最大值和最小值.

相关试题