【题目】(1)先化简,再求值 x(x﹣1)+2x(x+1)﹣(3x﹣1)(2x﹣5),其中 x=2.
(2)解方程(3x﹣2)(2x﹣3)=(6x+5)(x﹣1)+15.
参考答案:
【答案】(1)﹣3x2+18x﹣5,19;(2)x=﹣
.
【解析】
(1)根据整式的混合运算法则把原式化简,代入计算即可;
(2)根据整式的混合运算法则把原方程变形,根据一元一次方程的解法解出方程.
(1)原式=x2-x+2x2+2x-(6x2-17x+5)
=x2-x+2x2+2x-6x2+17x-5
=-3x2+18x-5
当x=2时,原式=-3×22+18×2-5=19;
(2)(3x-2)(2x-3)=(6x+5)(x-1)+15
6x2-13x+6=6x2-x+10
-12x=4,
x=-
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图:直线 a,b,c 表示三条相互交叉而建的公路,现在要建立一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )

A. 1 个 B. 2 个 C. 3 个 D. 4 个
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,小敏在测量学校一幢教学楼AB的高度时,她先在点C测得教学楼的顶部A的仰角为30°,然后向教学楼前进12米到达点D,又测得点A的仰角为45°.请你根据这些数据,求出这幢教学楼AB的高度.
(结果精确到0.1米,参考数据:
≈1.73)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在正方形ABCD中,E是CD上一点,DF⊥BE交BE的延长线于点G,交BC的延长线于点F.

(1)求证:△BCE≌△DCF.
(2)若∠DBE=∠CBE,求证:BD=BF.
(3)在(2)的条件下,求CE:ED的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】.如图①,在△ABC 中,D、E 分别是 AB、AC 上的点,AB=AC,AD=AE,然后将△ADE 绕点 A 顺时针旋转一定角度,连接 BD,CE,得到图②,将 BD、CE 分别延长至 M、N,使 DM=
BD,EN=
CE,得到图③,请解答下列问题:(1)在图②中,BD 与 CE 的数量关系是 ;
(2)在图③中,猜想 AM 与 AN 的数量关系,∠MAN 与∠BAC 的数量关系,并证明你的猜想.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知直线y=﹣x+3与x轴、y轴分别交于A,B两点,抛物线y=﹣x2+bx+c经过A,B两点,点P在线段OA上,从点A以1个单位/秒的速度匀速运动;同时,点Q在线段AB上,从点A出发,向点B以
个单位/秒的速度匀速运动,连接PQ,设运动时间为t秒.
(1)求抛物线的解析式;
(2)当t为何值时,△APQ为直角三角形;
(3)过点P作PE∥y轴,交AB于点E,过点Q作QF∥y轴,交抛物线于点F,连接EF,当EF∥PQ时,求点F的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】分别写有数0,2﹣1 , ﹣2,cos30°,3的五张卡片,除数字不同外其他均相同,从中任意抽取一张,那么抽到非负数的概率是( )
A.
B.
C.
D.
相关试题