【题目】.如图①,在△ABC 中,DE 分别是 ABAC 上的点,AB=ACAD=AE,然后将△ADE 绕点 A 顺时针旋转一定角度,连接 BDCE,得到图②,将 BDCE 分别延长至 MN,使 DM= BDEN=CE,得到图③,请解答下列问题:

(1)在图②中,BD CE 的数量关系是

(2)在图③中,猜想 AM AN 的数量关系,∠MAN 与∠BAC 的数量关系,并证明你的猜想.


参考答案:

【答案】1BD=CE;(2AM=AN∠MAN=∠BAC ,理由见解析.

【解析】

(1)根据题意和旋转的性质可知△AEC≌△ADB,所以BD=CE;
(2)根据题意可知∠CAE=BAD,AB=AC,AD=AE,所以得到△BAD≌△CAE,在△ABM和△ACN中,DM=BD,EN=CE,可证△ABM≌△ACN,所以AM=AN,即∠MAN=∠BAC.

(1)由旋转的性质可得:

中,

,即

为等腰三角形,且

关闭