【题目】如图(1),平面直角坐标系中,点A、B分别在x、y轴上,点B的坐标为(0,1),∠BAO=30°.
![]()
(1)求AB的长度;
(2)以AB为一边作等边△ABE,作OA的垂直平分线MN交AB的垂线AD于点,求证:BD=OE;
(3)在(2)的条件下,连接DE交AB于F,求证:F为DE的中点.
参考答案:
【答案】(1)2;(2)见解析;(3)见解析.
【解析】
(1)直接运用直角三角形30°角的性质即可.
(2)连接OD,易证△ADO为等边三角形,再证△ABD≌△AEO即可.
(3)作EH⊥AB于H,先证△ABO≌△AEH,得AO=EH,再证△AFD≌△EFH即可.
(1)解:∵在Rt△ABO中,∠BAO=30°,
∴AB=2BO=2;
(2)证明:连接OD,
![]()
∵△ABE为等边三角形,
∴AB=AE,∠EAB=60°,
∵∠BAO=30°,作OA的垂直平分线MN交AB的垂线AD于点D,
∴∠DAO=60°.
∴∠EAO=∠NAB
又∵DO=DA,
∴△ADO为等边三角形.
∴DA=AO.
在△ABD与△AEO中,
∵
,
∴△ABD≌△AEO(SAS).
∴BD=OE.
(3)证明:作EH⊥AB于H.
∵AE=BE,∴AH=
AB,
∵BO=
AB,∴AH=BO,
在Rt△AEH与Rt△BAO中,
,
∴Rt△AEH≌Rt△BAO(HL),
∴EH=AO=AD.
又∵∠EHF=∠DAF=90°,
在△HFE与△AFD中,
,
∴△HFE≌△AFD(AAS),
∴EF=DF.
∴F为DE的中点.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下列材料,完成任务:
自相似图形
定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.
任务:
(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为 ;
(2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为 ;
(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).
请从下列A、B两题中任选一条作答:我选择 题.
A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a= (用含b的式子表示);
②如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a= (用含n,b的式子表示);
B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a= (用含b的式子表示);
②如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a= (用含m,n,b的式子表示).

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=ax2+bx过A(﹣4,0),B(﹣1,3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.
(1)求抛物线的函数表达式;
(2)写出点C的坐标,并求出△ABC的面积;
(3)点P是抛物线上一动点,且位于x轴的下方,当△ABP的面积为15时,求出点P的坐标;
(4)若点M在直线BH上运动,点N在x轴上运动,当以点C、M、N为顶点的三角形为等腰直角三角形时,请直接写出此时点N的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在RI△ABC中,∠C=90°,AC=BC=4cm,点P从点A出发沿线段AB以
cm/s的速度向点B运动,设运动时间为ts.过点P作PD⊥AB,PD与△ABC的腰相交于点D.(1)当t=(4-2
)s时,求证:△BCD≌△BPD;(2)当t为何值时,S△APD=3S△BPD,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某中学对全校1200名学生进行“校园安全知识”的教育活动,从1200名学生中随机抽取部分学生进行测试,成绩评定按从高分到低分排列分为
四个等级,绘制了图①、图②两幅不完整的统计图,请结合图中所给信息解答下列问题:
(1)求本次抽查的学生共有______人;
(2)将条形统计图和扇形统计图补充完整;
(3)扇形统计图中“
”所在扇形圆心角的度数为______;(4)估计全校“
”等级的学生有______人 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知数轴上点A表示的数为﹣6,点B在数轴上A点右侧,且AB=14,动点M从点A出发,以每秒5个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.

(1)写出数轴上点B表示的数 ,点M表示的数 (用含t的式子表示);
(2)动点N从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点M,N同时出发,问点M运动多少秒时追上点N?
(3)若P为AM的中点,F为MB的中点,点M在运动过程中,线段PF的长度是否发生变化?若变化,请说明理由;若不变,请求出线段PF的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD中,AC、BD是它的对角线,∠ABC=∠ADC=90°,∠BCD是锐角.
(1)若BD=BC,证明:sin∠BCD=
.(2)若AB=BC=4,AD+CD=6,求
的值.(3)若BD=CD,AB=6,BC=8,求sin∠BCD的值.
(注:本题可根据需要自己画图并解答)

相关试题