【题目】如图,在△ABC中,BC边的垂直平分线交AC边于点D,连接BD.
(1)如图CE=4,△BDC的周长为18,求BD的长.
(2)求∠ADM=60°,∠ABD=20°,求∠A的度数.
![]()
参考答案:
【答案】(1)BD=5;(2)∠A =80°.
【解析】试题分析:(1)根据MN是线段BC的垂直平分线且CE=4,则可得出BE=4,再根据△BDC的周长为18可得出BD的值;
(2)由对顶角相等可得∠CDN=∠ADM=50°,在Rt△CED中,根据三角和内角和定理计算出∠C的度数,再由∠DBC=∠C和∠ABC=∠ABD+∠DBC计算出∠ABC的度数,再根据三角形内角和定理即可计算出∠A的度数.
试题解析:
(1)∵MN垂直平分BC,
∴DC=BD,
CE=EB,
又∵EC=4,
∴BE=4,
又∵△BDC的周长=18,
∴BD+DC=10,
∴BD=5;
(2)∵∠ADM=50°,
∴∠CDN=50°,
又∵MN垂直平分BC,
∴∠DNC=90°,
∴∠C=40°,
又∵∠C=∠DBC=40°,
∠ABD=20°,
∴∠ABC=60°,
∴∠A=180°-∠C-∠ABC=80°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读理解题:
定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位.那么和我们所学的实数对应起来就叫做复数,表示为a+bi(a,b为实数),a叫这个复数的实部,b叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.
例如计算:(2+i)+(3﹣4i)=5﹣3i.
(1)填空:i4= ,i5= .
(2)计算:①(4+i)(4﹣i); ②(3+i)2;
(3)若两个复数相等,则它们的实部和虚部必须分别相等,完成下列问题:已知:(x+y)+3i=(1﹣x)﹣yi,(x,y为实数),求x,y的值.
(4)试一试:请利用以前学习的有关知识将
化简成a+bi的形式. -
科目: 来源: 题型:
查看答案和解析>>【题目】为迎接“五一劳动节”,某超市开展促销活动,决定对A,B两种商品进行打折出售.打折前,买6件A商品和3件B商品需要108元,买3件A商品和4件B商品需要94元.问:打折后,若买5件A商品和4件B商品仅需86元,比打折前节省了多少元钱?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知A(1,0)、B(0,-1)、C(-1,2)、D(2,-1)、E(4,2)五个点,抛物线y=a(x-1)2+k(a>0)经过其中的三个点.
(1)求证:C、E两点不可能同时在抛物线y=a(x-1)2+k(a>0)上;
(2)点A在抛物线y=a(x-1)2+k(a>0)上吗?为什么?
(3)求a和k的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】某物流公司承接A、B两种货物运输业务,已知3月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;4月份由于工人工资上涨,运费单价上涨情况为:A货物运费单价增加了40%,B货物运费单价上涨到40元/吨;该物流公司4月承接的A种货物和B种货物的数量与3月份相同,4月份共收取运费13000元.试求该物流公司3月份运输A、B两种货物各多少吨?
-
科目: 来源: 题型:
查看答案和解析>>【题目】广州火车南站广场计划在广场内种植A,B两种花木共 6600棵,若A花木数量是B花木数量的2倍少600棵.
(1)A,B两种花木的数量分别是多少棵?
(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?
-
科目: 来源: 题型:
查看答案和解析>>【题目】为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.
(1)求足球和篮球的单价各是多少元?
(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?
相关试题