【题目】如图,D是△ABC外接圆上的动点,且B,D位于AC的两侧,DE⊥AB,垂足为E,DE的延长线交此圆于点F.BG⊥AD,垂足为G,BG交DE于点H,DC,FB的延长线交于点P,且PC=PB.
(1)求证:BG∥CD;
(2)设△ABC外接圆的圆心为O,若AB=
DH,∠OHD=80°,求∠BDE的大小.
![]()
参考答案:
【答案】(1)证明见解析;(2)∠BDE的度数为20°或40°.
【解析】
(1)PC=PB,得到∠PCB=∠PBC,根据圆内接四边形的性质,得到∠BAD+∠BCD=180°,根据同角的补角相等得到∠BAD=∠PCB,根据圆周角定理得到∠BAD=∠BFD,等量代换得到∠BFD=∠PCB=∠PBC,即可证明BC∥DF,根据AC是⊙O的直径,得到
∠ADC=90°,根据BG⊥AD,得到∠ADC=∠AGB,即可证明BG∥CD;
(2)分①当点O在DE的左侧和②当点O在DE的右侧两种情况进行讨论.
(1)证明:如图1,
![]()
∵PC=PB,
∴∠PCB=∠PBC,
∵四边形ABCD内接于圆,
∴∠BAD+∠BCD=180°,
∵∠BCD+∠PCB=180°,
∴∠BAD=∠PCB,
∵∠BAD=∠BFD,
∴∠BFD=∠PCB=∠PBC,
∴BC∥DF,
∵DE⊥AB,
∴∠DEB=90°,
∴∠ABC=90°,
∴AC是⊙O的直径,
∴∠ADC=90°,
∵BG⊥AD,
∴∠AGB=90°,
∴∠ADC=∠AGB,
∴BG∥CD;
(2)由(1)得:BC∥DF,BG∥CD,
∴四边形BCDH是平行四边形,
∴BC=DH,
在Rt△ABC中,∵
∴tan∠ACB=
∴∠ACB=60°,∠BAC=30°,
∴∠ADB=60°,
∴
①当点O在DE的左侧时,如图2,作直径DM,连接AM、OH,则∠DAM=90°,
∴∠AMD+∠ADM=90°
∵DE⊥AB,
∴∠BED=90°,
∴∠BDE+∠ABD=90°,
∵∠AMD=∠ABD,
∴∠ADM=∠BDE,
∵![]()
∴DH=OD,
∴∠DOH=∠OHD=80°,
∴∠ODH=20°
∵∠ADB=60°,
∴∠ADM+∠BDE=40°,
∴∠BDE=∠ADM=20°,
②当点O在DE的右侧时,如图3,作直径DN,连接BN,
由①得:∠ADE=∠BDN=20°,∠ODH=20°,
∴∠BDE=∠BDN+∠ODH=40°,
综上所述,∠BDE的度数为20°或40°.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB为⊙O的直径,点C在⊙O外,∠ABC的平分线与⊙O交于点D,∠C=90°.
(1)CD与⊙O有怎样的位置关系?请说明理由;
(2)若∠CDB=60°,AB=6,求
的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在
中,
,
,点P从点B出发,以
速度沿
向点C运动,设点P的运动时间为t秒.(1)
_______
.(用含t的代数式表示)(2)当点P从点B开始运动,同时,点Q从点C出发,以
的速度沿
向点A运动,当
≌
时,求v的值.(3)在(2)的条件下,求
≌
时v的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB=AC=8,∠BAC=90,直线l与以AB为直径的⊙O相切于点B,点D是直线l上任意一动点,连结DA交⊙O点E.
(1)当点D在AB上方且BD=6时,求AE的长;
(2)当CE恰好与⊙O相切时,求BD的长为多少?

-
科目: 来源: 题型:
查看答案和解析>>【题目】用适当的方法解下列方程:
(1)4(x-1)2=100
(2)x2-2x-15=0
(3)3x2-13x-10=0
(4)3(x-3)2+x(x-3)=0
-
科目: 来源: 题型:
查看答案和解析>>【题目】在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线, DE⊥AB于点E.

(1)如图1,连接EC,求证:△EBC是等边三角形;
(2)点M是线段CD上的一点(不与点C,D重合),以BM为一边,在BM的下方作∠BMG=60°,MG交DE延长线于点G.请你在图2中画出完整图形,并直接写出MD,DG与AD之间的数量关系;
(3)如图3,点N是线段AD上的一点,以BN为一边,在BN的下方作∠BNG=60°,NG交DE延长线于点G,且MB=MG.试探究ND,DG与AD数量之间的关系,并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,△ABC中,∠C=90°.


(1)若AC=4,BC=3,AE=
,DE⊥AC.且DE=DB,求AD的长; (2)请你用没有刻度的直尺和圆规,在线段AB上找一点F,使得点F到边AC的距离等于FB(注:不写作法,保留作图痕迹,对图中涉及到的点的用字母进行标注)
相关试题