【题目】已知,△ABC中,∠C=90°.
![]()
![]()
(1)若AC=4,BC=3,AE=
,DE⊥AC.且DE=DB,求AD的长;
(2)请你用没有刻度的直尺和圆规,在线段AB上找一点F,使得点F到边AC的距离等于FB(注:不写作法,保留作图痕迹,对图中涉及到的点的用字母进行标注)
参考答案:
【答案】(1)
.(2)作图见解析
【解析】
(1)根据DE∥BC,得出△ADE∽△ABC,进而得到
,据此可得AD的长.
(2)作∠B的平分线BG,交AC于G,作BG的垂直平分线MN,交AB于F,则FG=FB,而FG∥BC,故FG⊥AC,即点F到边AC的距离等于FB.
(1)在Rt△ABC中,AC=4,BC=3,
∴AB=5,
∵DE⊥AC,∠C=90°,
∴DE∥BC,
∴△ADE∽△ABC,
∴
,
即
,
解得AD=
,
故AD的长为
.
(2)如图2所示,作∠B的平分线BG,交AC于G,作BG的垂直平分线MN,交AB于F,则点F即为所求.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,D是△ABC外接圆上的动点,且B,D位于AC的两侧,DE⊥AB,垂足为E,DE的延长线交此圆于点F.BG⊥AD,垂足为G,BG交DE于点H,DC,FB的延长线交于点P,且PC=PB.
(1)求证:BG∥CD;
(2)设△ABC外接圆的圆心为O,若AB=
DH,∠OHD=80°,求∠BDE的大小.
-
科目: 来源: 题型:
查看答案和解析>>【题目】用适当的方法解下列方程:
(1)4(x-1)2=100
(2)x2-2x-15=0
(3)3x2-13x-10=0
(4)3(x-3)2+x(x-3)=0
-
科目: 来源: 题型:
查看答案和解析>>【题目】在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线, DE⊥AB于点E.

(1)如图1,连接EC,求证:△EBC是等边三角形;
(2)点M是线段CD上的一点(不与点C,D重合),以BM为一边,在BM的下方作∠BMG=60°,MG交DE延长线于点G.请你在图2中画出完整图形,并直接写出MD,DG与AD之间的数量关系;
(3)如图3,点N是线段AD上的一点,以BN为一边,在BN的下方作∠BNG=60°,NG交DE延长线于点G,且MB=MG.试探究ND,DG与AD数量之间的关系,并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某公司实行年工资制,职工的年工资由基础工资、住房补贴和医疗费三项组成,具体规定如下:
项目
第一年的工资(万元)
一年后的计算方法
基础工资
1
每年的增长率相同
住房补贴
0.04
每年增加0.04
医疗费
0.1384
固定不变
(1)设基础工资每年增长率为x,用含x的代数式表示第三年的基础工资为 万元;
(2)某人在公司工作了3年,他算了一下这3年拿到的住房补贴和医疗费正好是这3年基础工资总额的18 %,问基础工资每年的增长率是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)如图1,图2,图3,在
中,分别以
,
为边,向
外作正三角形,正四边形,正五边形,
,
相交于点O.①如图1,求证:
≌
;②探究:如图1,
________;如图2,
_______;如图3,
_______;(2)如图4,已知:
,
是以
为边向
外所作正n边形的一组邻边:
,
是以
为边向
外所作正n边形的一组邻边,
,
的延长相交于点O.①猜想:如图4,
(用含n的式子表示);②根据图4证明你的猜想.

-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读理解:配方法是中学数学的重要方法,用配方法可求最大(小)值,对于任意正实数a、b,可作如下变形a+b=
=
-2
+2
=
+2
,又∵
≥0,∴
+2
≥0+ 2
,即a+b ≥2
.(1)根据上述内容,回答下列问题:在a+b≥2
(a、b均为正实数)中,若ab为定值p,则a+b≥ 2
,当且仅当a、b满足________时,a+b有最小值2
. (2)思考验证:如图1,△ABC中,∠ACB=90°,CD⊥AB,垂足为D,CO为AB边上中线,AD=2a ,DB=2b, 试根据图形验证a+b≥2
成立,并指出等号成立时的条件.(3)探索应用:如图2,已知A为反比例函数
的图象上一点,A点的横坐标为1,将一块三角板的直角顶点放在A处旋转,保持两直角边始终与x轴交于两点D、E,F(0,-3)为y轴上一点,连接DF、EF,求四边形ADFE面积的最小值. 
相关试题