【题目】如图,△ABC是边长为m的正三角形,D,E,F分别在边AB,BC,CA上,AE,BF交于点P,BF,CD交于点Q,CD,AE交于点R,若
=
=
=k(0<k<
).![]()
(1)求∠PQR的度数;
(2)求证:△ARD∽△ABE;
(3)求△PQR与△ABC的面积之比(用含k的代数式表示)
参考答案:
【答案】
(1)
解:∵
=
=
=k,△ABC是等边三角形,
∴AB=CB=AC,∠ABC=∠BAC=∠ACB=60°,AD=BE=CF,
∴△ABE≌△BCF≌△CAD,
∴∠BAE=∠CBQ=∠ACD,∴∠ABP=∠BCQ=∠CAR,
∴△ABP≌△BCQ≌△CAR,
∴∠APB=∠BQC=∠ARC,
∴180°﹣∠APB=180°﹣BQC=180°﹣ARC,
即∠RPQ=∠PQR=∠PRQ,
∵∠RPQ+∠PQR+∠PRQ=180°,
∴∠RPQ=∠PQR=∠PRQ=60°.
∴∠PQR=60°.
(2)
解:∵△PQR是等边三角形,
∴∠PRQ=60°,
∴∠ARD=∠PRQ=60°,
∴∠ARD=∠ABC=∠ABE,
∵∠DAR=∠EAB,
∴△ARD∽△ABE
(3)
解:作AH⊥BC于H.易知BH=CH=
,AH=
m,BE=km,EH=
m﹣km,
在Rt△AEH中,AE=
=
m,
∵△ARD∽△ABE,
∴
=
=
,
∴AR=
m,RD=
m,PE=RD=
m,
∴AP=AE﹣PE=
m,
当0<k<
时,RP=AP﹣AR=
m,
∵△PQR,△ABC都是等边三角形,
∴
=
=
.
![]()
【解析】(1)只要证明△ABP≌△BCQ≌△CAR,推出∠APB=∠BQC=∠ARC,推出180°﹣∠APB=180°﹣BQC=180°﹣ARC,即∠RPQ=∠PQR=∠PRQ,由此即可解决问题.(2)只要证明∠ARD=∠ABE=60°即可解决问题.(3)想办法求出等边三角形△PQR与△ABC的边长即可解决问题.
【考点精析】通过灵活运用等边三角形的性质和相似三角形的应用,掌握等边三角形的三个角都相等并且每个角都是60°;测高:测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长成比例”的原理解决;测距:测量不能到达两点间的举例,常构造相似三角形求解即可以解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作EF⊥AB于点F,交AC的延长线于点E.

(1)判断EF与⊙O的位置关系,并说明理由;
(2)若AF=6,sinE=
,求BF的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE与CD交于点M,AE与BC交于点N.
(1)求证:AE=CD;
(2)求证:AE⊥CD;
(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有 (请写序号,少选、错选均不得分).

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知抛物线y=3ax2+2bx+c.
(1)若a=b=1,c=﹣1,求抛物线与x轴公共点的坐标;
(2)若a=b=1,且当﹣1<x<1时,抛物线与x轴有且只有一个公共点,求c的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC与△CDE都是等边三角形,B,C,D在一条直线上,连结B,E两点交AC于点M,连结A,D两点交CE于N点.
(1)AD与BE有什么数量关系,并证明你的结论.
(2)求证:CO平分∠BOD.

-
科目: 来源: 题型:
查看答案和解析>>【题目】1949年9月27日,全国政协第一届全体会议上通过的《关于中华人民共和国国都、纪年、国歌、国徽、国旗的决议》中,第四点规定:“中华人民共和国的国旗为红底五星旗(如图1),象征中国革命人民大团结.长宽比例为3:2,左上方缀黄色五角星五颗,四颗小星环拱在一颗大星的右面,并各有一个角尖正对大星的中心点.”

第31届夏季奥林匹克运动会于2016年8月5日﹣21日在巴西的里约热内卢举行.在此次的奥运颁奖舞台上出了尴尬情况,多名细心网友指出,射击和游泳颁奖仪式中,冉冉升起的五星红旗被搞错了(如图2).
请你先阅读五星红旗制作的相关规定,再仔细观察图①和图②中的国旗,用所学到的图形知识和语言解释错误的原因.
错误的原因是:_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了迎接“六一”国际儿童节,某童装品牌专卖店准备购进甲、乙两种童装,这两种童装的进价和售价如下表:
价格
甲
乙
进价(元/件)
m
m+20
售价(元/件)
150
160
如果用5000元购进甲种童装的数量与用6000元购进乙种童装的数量相同.
(1)求m的值;
(2)要使购进的甲、乙两种童装共200件的总利润(利润=售价﹣进价)不少于8980元,且甲种童装少于100件,问该专卖店有哪几种进货方案?
相关试题