【题目】用一个平面去截一个长方体,截面的形状不可能是( )
A. 四边形 B. 五边形 C. 六边形 D. 七边形
参考答案:
【答案】D
【解析】
长方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形,由此进行判断即可.
长方体有六个面,用平面去截长方体时最多与六个面相交得六边形,最少与三个面相交得三角形,
因此不可能是七边形,
故选D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知三角形的两边分别为4和10,则此三角形的第三边可能是( )
A.4
B.6
C.8
D.16 -
科目: 来源: 题型:
查看答案和解析>>【题目】如果等腰三角形的两边长是6cm和3cm,那么它的周长是( )
A.9cm
B.12cm
C.12cm或15cm
D.15cm -
科目: 来源: 题型:
查看答案和解析>>【题目】用火柴棒按下图的方式搭图形:

(1)图① 根火柴棒;图②有 根火柴棒;图③有 根火柴棒.
(2)按上面的方法继续下去,第100个图形中有多少根火柴棒?
(3)第n(n≥1的整数)个图形中有多少根火柴棒?
-
科目: 来源: 题型:
查看答案和解析>>【题目】在解决数学问题的过程中,我们常用到 “分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答问题.
【提出问题】三个有理数
满足
,求
的值.【解决问题】
解:由题意,得
三个有理数都为正数或其中一个为正数,另两个为负数.①
都是正数,即
时,则
;②当
中有一个为正数,另两个为负数时,不妨设
,则
.综上所述,
值为3或-1.【探究】请根据上面的解题思路解答下面的问题:
(1)三个有理数
满足
,求
的值;(2)若
为三个不为0的有理数,且
,求
的值 -
科目: 来源: 题型:
查看答案和解析>>【题目】等腰三角形的一个内角是50度,它的一腰上的高与底边的夹角是( )度.
A.25
B.40
C.25或40
D.60 -
科目: 来源: 题型:
查看答案和解析>>【题目】下图是由一些火柴棒搭成的图案:

(1)摆第①个图案用______根火柴棒,摆第②个图案用______根火柴棒,摆第③个图案用______根火柴棒;
(2)按照这种方式摆下去,摆第n个图案用多少根火柴棒?
相关试题