【题目】如图的△ABC中,AB>AC>BC,且D为BC上一点。现打算在AB上找一点P,在AC上找一点Q,使得△APQ与以P、D、Q为顶点的三角形全等,以下是甲、乙两人的作法:
甲:连接AD,作AD的中垂线分别交AB、AC于P点、Q点,则P、Q两点即为所求;
乙:过D作与AC平行的直线交AB于P点,过D作与AB平行的直线交AC于Q点,则P、Q两点即为所求;
对于甲、乙两人的作法,下列判断何者正确( )?
![]()
A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确
参考答案:
【答案】A
【解析】
如图1,根据线段垂直平分线的性质得到PA=PD,QA=QD,则根据“SSS”可判断△APQ≌△DPQ,则可对甲进行判断;如图2,根据平行四边形的判定方法先证明四边形APDQ为平行四边形,则根据平行四边形的性质得到PA=DQ,PD=AQ,则根据“SSS”可判断△APQ≌△DQP,则可对乙进行判断.
如图1,∵PQ垂直平分AD,
∴PA=PD,QA=QD,
而PQ=PQ,
∴△APQ≌△DPQ(SSS),所以甲正确;
如图2,∵PD∥AQ,DQ∥AP,
∴四边形APDQ为平行四边形,
∴PA=DQ,PD=AQ,
而PQ=QP,
∴△APQ≌△DQP(SSS),所以乙正确。
故选:A.
![]()
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,△ABC的一边AB在x轴上,∠ABC=90°,点C(4,8)在第一象限内,AC与y轴交于点E,抛物线y=
+bx+c经过A、B两点,与y轴交于点D(0,﹣6).
(1)请直接写出抛物线的表达式;
(2)求ED的长;
(3)点P是x轴下方抛物线上一动点,设点P的横坐标为m,△PAC的面积为S,试求出S与m的函数关系式;
(4)若点M是x轴上一点(不与点A重合),抛物线上是否存在点N,使∠CAN=∠MAN.若存在,请直接写出点N的坐标;若不存在,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】抛物线y=ax2+bx+3(a≠0)过A(4,4),B(2,m)两点,点B到抛物线对称轴的距离记为d,满足0<d≤1,则实数m的取值范围是( )
A. m≤2或m≥3 B. m≤3或m≥4 C. 2<m<3 D. 3<m<4
-
科目: 来源: 题型:
查看答案和解析>>【题目】二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(﹣3,y1)、点B(﹣
,y2)、点C(
,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有( )
A. 2个 B. 3个 C. 4个 D. 5个
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,方格纸中每个小正方形的边长都是单位1,△ABC的三个顶点都在格点(即这些小正方形的顶点)上,且它们的坐标分别是A(2,﹣3),B(5,﹣1),C(1,3),结合所给的平面直角坐标系,解答下列问题:

(1)请在如图坐标系中画出△ABC;
(2)画出△ABC关于y轴对称的△A'B'C',并写出△A'B'C'各顶点坐标。
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知关于
的一元二次方程
.(1)试证明:无论
取何值此方程总有两个实数根;(2)若原方程的两根
,
满足
,求
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知,如图,点A、D、B、E在同一直线上,AC=EF,AD=BE,∠A=∠E,
(1)求证:△ABC≌△EDF;
(2)当∠CHD=120°,猜想△HDB的形状,并说明理由.

相关试题