【题目】如图,四边形ABCD是矩形,点E在AD边上,点F在AD的延长线上,且BE=CF.
(1)求证:四边形EBCF是平行四边形.
(2)若∠BEC=90°,∠ABE=30°,AB=
,求ED的长.
![]()
参考答案:
【答案】(1)证明见解析(2)3
【解析】试题分析:
(1)由AB=CD,BE=CF,可证Rt△BAE≌Rt△CDF,从而证得BE∥CF,即可得证;
(2)由题意可知∠2=30°,∠1=∠3=60°,在直角△ABE中求出AE,BE,在直角△BEC中求出BC的长,即可求出ED的长.
试题解析:
(1)证明:
∵四边形ABCD是矩形,∴∠A=∠CDF=∠ABC=90°,AB=DC,AD=BC,
在Rt△BAE和Rt△CDF中,
,
∴Rt△BAE≌Rt△CDF,∴∠1=∠F,∴BE∥CF,
又∵BE=CF,∴四边形EBCF是平行四边形.
![]()
(2)解:∵Rt△BAE中,∠2=30°,AB=
,
∴AE=ABtan∠2=1,
,∠3=60°,
在Rt△BEC中,
,
∴AD=BC=4,
∴ED=AD﹣AE=4﹣1=3.
-
科目: 来源: 题型:
查看答案和解析>>【题目】定义:任意两个数
,按规则
扩充得到一个新数
,称所得的新数
为“如意数”.(1)若
直接写出
的“如意数”
;(2)如果
,求
的“如意数”
,并证明“如意数”
;(3)已知
,且
的“如意数”
,则
_______________________(用含
的式子表示) -
科目: 来源: 题型:
查看答案和解析>>【题目】某开发商进行商铺促销,广告上写着如下条款:投资者购买商铺后,必须由开发商代租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购,投资者可在以下两种购铺方案中做出选择:
方案一:按照商铺标价一次性付清铺款,每年可获得的租金为商铺标价的10%;
方案二:按商铺标价的八折一次性付清铺款,前3年商铺的租金收益归开发商所有,3年后每年可获得的租金为商铺标价的9%
(1)问投资者选择哪种购铺方案,5年后所获得的投资收益率更高?为什么?
(注:投资收益率=
×100%)(2)对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益相差7.2万元.问甲乙两人各投资了多少万元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,A,B在数轴上对应的数分别用a,b表示,且(
ab+100)2+|a﹣20|=0,P是数轴上的一个动点.(1)在数轴上标出A、B的位置,并求出A、B之间的距离.
(2)已知线段OB上有点C且|BC|=6,当数轴上有点P满足PB=2PC时,求P点对应的数.
(3)动点P从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度第四次向右移动7个单位长度,….点P能移动到与A或B重合的位置吗?若都不能,请直接回答.若能,请直接指出,第几次移动与哪一点重合?

-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)n边形(n>3)其中一个顶点的对角线有_____条;
(2)一个凸多边形共有14条对角线,它是几边形?
(3)是否存在有21条对角线的凸多边形?如果存在,它是几边形?如果不存在,说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某地探空气球的气象观测资料表明,高度每增加1千米,气温下降大约5℃,若该地区地面温度为23℃,该地区高空某点温度为-27℃,则此点的高度是大约是多少千米?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知直线l1∥l2,l3、l4和l1、l2分别交于点A、B、C、D,点P在直线l3或l4上且不与点A、B、C、D重合.记∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.



(1)若点P在图(1)位置时,求证:∠3=∠1+∠2;
(2)著点P在图(2)位置时,请写出∠1、∠2、∠3之间的关系,并说明理由;
(3)若点P在图(3)位置时,写出∠1、∠2、∠3之间的关系
相关试题