【题目】如图1,将两个完全相同的三角形纸片ABC和A′B′C重合放置,其中∠C=90°,∠B=∠B′=30°,AC=AC′=2.![]()
(1)如图2,固定△ABC,将△A′B′C绕点C旋转,当点A′恰好落在AB边上时,
①∠CA′B′=;旋转角ɑ=(0°<ɑ<90°),线段A′B′与AC的位置关系是;
(2)②设△A′BC的面积为S1 , △AB′C的面积为S2 , 则S1与S2的数量关系是什么?证明你的结论;![]()
(3)如图3,∠MON=60°,OP平分∠MON,OP=PN=4,PQ∥MO交ON于点Q.若在射线OM上存在点F,使S△PNF=S△OPQ , 请直接写出相应的OF的长.![]()
参考答案:
【答案】
(1)60°;60°;平行
(2)
解:S1=S2.理由如下:
∵A′B′∥AC,
∴A′E⊥BC,
在Rt△CA′E中,A′E=
CA′=1,CE=
A′E=
,
∴S1=
12
=
,
S2=
2
=
,
∴S1=S2
(3)
如图3,作PF1∥ON交OM于F1,作PF2⊥OP交OM于F2,
∵∠MON=60°,OP平分∠MON,
∴∠POQ=∠POF1=30°,
∵PQ∥OM,PF1∥OQ,
∴四边形OQPF1为平行四边形,
∴PF1=OQ,
∴S△NF1P=S△POQ,
∵∠OPF2=90°,∠F2OP=30°,
∴∠OF2P=60°,
而∠F2F1P=∠MON=60°,
∴△F2F1P为等边三角形,
∴PF2=PF1,
由(1)中的结论得S△PNF2=S△OPQ,
∴点F1、点F2为满足条件的点,
在Rt△OPF2中,sin∠POF2=
,
∴OF2=
=
,
∴PF2=
OF2=
,
∵PF1∥OQ,
∴∠OPF1=∠POQ=30°,
∴∠OPF1=∠POF1=30°,
∴OF1=PF1=PF2,
∴OF1=
,
综上所述,OF的长为
或
.
![]()
【解析】解:(1)①如图1,∵∠C=90°,∠B=∠B′=30°,AC=AC′=2,
∴∠CAB=∠CA′B′=60°,BC=2
,
如图2,
∵△A′B′C绕点C旋转,点A′恰好落在AB边上,
∴∠CAB=∠CA′B′=60°,CA=CA′,∠ACA′为旋转角,
∴△CAA′为等边三角形,
即旋转角为60°;
∵∠CA′B′=∠ACA′,
∴A′B′∥AC;
所以答案是60°;60°;平行;![]()
【考点精析】利用全等三角形的性质和图形的旋转对题目进行判断即可得到答案,需要熟知全等三角形的对应边相等; 全等三角形的对应角相等;每一个点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等.旋转的方向、角度、旋转中心是它的三要素.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.
(1)求证:AE=CF;
(2)若∠ABE=55°,求∠EGC的大小.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F.

(1)求证:△ABE≌△CDF;
(2)若AC与BD交于点O,求证:AO=CO.
-
科目: 来源: 题型:
查看答案和解析>>【题目】用单项式表示下列各式,并指出其系数和次数.
王明同学买
本练习册花
元,那么买
本练习册要花多少元?
正方体的棱长为
,那么它的表面积是多少?体积呢? -
科目: 来源: 题型:
查看答案和解析>>【题目】(2016.镇江)如图,AD、BC相交于点O,AD=BC,∠C=∠D=90°.
(1)若∠ABC=35°,求∠CAO的度数;
(2)求证:CO=DO

-
科目: 来源: 题型:
查看答案和解析>>【题目】为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的,该市自来水收费的价目表如下表(注:水费按月份结算,
表示立方米):价目表
每月用水量
单价
不超出
的部分
元
超出
不超出
的部分
元
超出
的部分
元
注:水费按月结算
例:若某户居民
月份用水
,应收水费为
(元).请根据上表的内容解答下列问题:
填空:若该户居民
月份用水
,则应收水费________元;
若该户居民
月份用水
(其中
),则应收水费多少元?(用含
的表示,并化简)
若该户居民
,
两个月共用水
(
月份用水量超过了
月份),设
月份用水
,求该户居民
,
两个月共交水费多少元?(用含
的表示,并化简) -
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.
(1)求证:△BAD≌△CAE;
(2)试猜想BD、CE有何特殊位置关系,并证明.

相关试题