【题目】(2016.镇江)如图,AD、BC相交于点O,AD=BC,∠C=∠D=90°.
(1)若∠ABC=35°,求∠CAO的度数;
(2)求证:CO=DO
![]()
参考答案:
【答案】(1)20°;(2)见解析;
【解析】(1)根据HL证明Rt△ABC≌Rt△BAD;由全等的性质得∠BAD=∠ABC,根据直角三角形两直角互余可求∠BAC=55 ,从而可求出∠CAO的度数;
(2)利用全等三角形的性质可得∠BAD=∠ABC,BC=AD,从而可证求证CO=DO.
∵∠D=∠C=90°,
∴△ABC和△BAD都是Rt△,
在Rt△ABC和Rt△BAD中,
∵AD=BC,AB=BA,
∴Rt△ABC≌Rt△BAD(HL);
∴∠BAD=∠ABC=35°.
∵∠ABC=35°,
∴∠BAC=90-35=55,
∴∠CAO=55-35=20.
(2)证明:∵Rt△ABC≌Rt△BAD,
∴∠BAD=∠ABC,BC=AD,
∴AO=BO,
∴BC-BO=AD-AO,
∴CO=DO.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F.

(1)求证:△ABE≌△CDF;
(2)若AC与BD交于点O,求证:AO=CO.
-
科目: 来源: 题型:
查看答案和解析>>【题目】用单项式表示下列各式,并指出其系数和次数.
王明同学买
本练习册花
元,那么买
本练习册要花多少元?
正方体的棱长为
,那么它的表面积是多少?体积呢? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,将两个完全相同的三角形纸片ABC和A′B′C重合放置,其中∠C=90°,∠B=∠B′=30°,AC=AC′=2.

(1)如图2,固定△ABC,将△A′B′C绕点C旋转,当点A′恰好落在AB边上时,
①∠CA′B′=;旋转角ɑ=(0°<ɑ<90°),线段A′B′与AC的位置关系是;
(2)②设△A′BC的面积为S1 , △AB′C的面积为S2 , 则S1与S2的数量关系是什么?证明你的结论;
(3)如图3,∠MON=60°,OP平分∠MON,OP=PN=4,PQ∥MO交ON于点Q.若在射线OM上存在点F,使S△PNF=S△OPQ , 请直接写出相应的OF的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的,该市自来水收费的价目表如下表(注:水费按月份结算,
表示立方米):价目表
每月用水量
单价
不超出
的部分
元
超出
不超出
的部分
元
超出
的部分
元
注:水费按月结算
例:若某户居民
月份用水
,应收水费为
(元).请根据上表的内容解答下列问题:
填空:若该户居民
月份用水
,则应收水费________元;
若该户居民
月份用水
(其中
),则应收水费多少元?(用含
的表示,并化简)
若该户居民
,
两个月共用水
(
月份用水量超过了
月份),设
月份用水
,求该户居民
,
两个月共交水费多少元?(用含
的表示,并化简) -
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.
(1)求证:△BAD≌△CAE;
(2)试猜想BD、CE有何特殊位置关系,并证明.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知在△ABC中,AB>AC,BE,CF都是△ABC的高线,P是BE上一点,且BP=AC,Q是CF延长线上一点,且CQ=AB,连结AP,AQ,QP.求证:
(1)AQ=PA.
(2)AP⊥AQ.

相关试题