【题目】“龟免赛跑”的故事同学们都非常热悉,图中的线段OD和折线OABC表示“龟兔赛跑时路程与时间的关系,请你根据图中给出的信息,解决下列问题.
(1)填空:折线OABC表示赛跑过程中_______(填“兔子”或“乌龟”)的路程与时间的关系,赛跑的全过程是___________米.
(2)兔子在起初每分钟跑多少米?乌龟每分钟爬多少米?
(3)乌龟用了多少分钟追上了正在睡觉的兔子?
(4)兔子醒来假,以400米/分的速度跑向终点,结果还是比乌龟晚到了0.5分钟,请你算算兔子中间停下睡觉用了多少分钟.
![]()
参考答案:
【答案】 (1)兔子 1500 (2)30米;(3)
;(4)46.5.
【解析】(1)根据根据图象和点D实际意义可得结论;
(2)根据点A实际意义知兔子起初速度,由点D实际意义可知乌龟的速度;
(3)利用兔子睡觉前行驶的路程是700米,结合乌龟的速度求出所用的时间;
(4)根据比乌龟晚到了0.5分钟求出兔子走完全程的时间,再得出兔子醒来后奔跑所用时间,求解可得.
(1)由图可知,折线OABC表示赛跑过程中兔子的路程与时间的关系,赛跑的全程是1500米.
(
)结合图象得出:
兔子在起初每分钟跑
(米),乌龟每分钟爬
(米).
(
)
(分钟),
所以乌龟用了
分钟追上了正在睡觉的兔子.
(
)
(分钟),
(分钟),
所以兔子中间停下睡觉用了
分钟.
-
科目: 来源: 题型:
查看答案和解析>>【题目】将长为20cm,宽为8cm的长方形白纸,按如图所示的方式粘合起来,粘合部分的宽为3cm.
根据题意,将下面的表格补充完整:白纸张数
张
1
2
3
4
5

纸条长度

20
______
54
71
______

直接写出用x表示y的关系式:______ ;
要使粘合后的总长度为1006cm,需用多少张这样的白纸? -
科目: 来源: 题型:
查看答案和解析>>【题目】将△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得△AB′C′,即如图①,我们将这种变换记为[θ,n].

(1)、如图①,对△ABC作变换[50°,
]得△AB′C′,则S△AB′C′:S△ABC= ;直线BC与直线B′C′所夹的锐角为 度;(2)、如图②,△ABC中,∠BAC=30°,∠ACB=90°,对△ABC 作变换[θ,n]得△AB'C',使点B、C、C′在同一直线上,且四边形ABB'C'为矩形,求θ和n的值;
(3)、如图③,△ABC中,AB=AC,∠BAC=36°,BC=l,对△ABC作变换[θ,n]得△AB′C′,使点B、C、B′在同一直线上,且四边形ABB'C'为平行四边形,求θ和n的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知矩形ABCD中,对角线AC、BD相交于点O,AE⊥BD,垂足为E,AD=8,

(1)若∠DAE︰∠BAE=3︰1,求∠EAC的度数;
(2)若ED=3BE,求AE的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,AC=4cm,BC=3cm,点P由B出发沿BA的方向向点A匀速运动,速度为1cm/s,同时点Q由A出发沿AC的方向向点C匀速运动,速度为2cm/s,连接PQ,设运动的时间为t(s),其中0<t<2,解答下列问题:

(1)当t为何值时,以P、Q、A为顶点的三角形与△ABC相似?
(2)是否存在某一时刻t,线段PQ将△ABC的面积分成1:2两部分?若存在,求出此时的t,若不存在,请说明理由;
(3)点P、Q在运动的过程中,△CPQ能否成为等腰三角形?若能,请求出此时t的值,若不存在,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】.已知:在矩形
中,
是对角线,
于点
,
于点
;
(1)如图1,求证:
;(2)如图2,当
时,连接
.
,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于矩形
面积的
. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形ABCD中,AB=3,BC=4.M、N在对角线AC上,且AM=CN,E、F分别是AD、BC的中点.
(1)求证:△ABM≌△CDN;
(2)点G是对角线AC上的点,∠EGF=90°,求AG的长.

相关试题