【题目】如图,在矩形ABCD中,O为AC中点,EF过点O且EF⊥AC分别交DC于点F,交AB于点E,点G是AE中点且∠AOG=30°,给出以下结论: ①∠AFC=120°;
②△AEF是等边三角形;
③AC=3OG;
④S△AOG=
S△ABC
其中正确的是 . (把所有正确结论的序号都选上)![]()
参考答案:
【答案】①②④
【解析】解:∵四边形ABCD是矩形, ∴AB∥CD,∠B=90°,
∴∠FCA=∠OAG,
∵O为AC中点,EF⊥AC,
∴AF=CF,
∴∠FAC=∠FCA,
∵点G是AE中点且∠AOG=30°,
∴OG=
AE=AG,
∴∠OAG=∠AOG=30°,
∴∠FCA=∠FAC=30°,
∴∠AFC=180°﹣30°﹣30°=120°,①正确;
∵∠FAE=30°+30°=60°,∠AEO=90°﹣30°=60°,
∴∠AFE=60°,
∴△AEF是等边三角形,②正确;
∵∠OAG=30°,EF⊥AC,
∴AE=2OE=2OG,
∴OA=
OE=
OG,
∴AC=2OA=2
OG,③不正确;
∵点G是AE中点,
∴S△AOG=
S△AOE ,
∵∠AOE=90°=∠B,∠OAE=∠BAC,
∴△AOE∽△ABC,相似比为
=
=
=
,
∴
=(
)=
,
∴S△AOG=
S△ABC , ④正确;
故答案为:①②④.
由矩形的性质得出AB∥CD,∠B=90°,得出∠FCA=∠OAG,由线段垂直平分线的性质得出AF=CF,得出∠FAC=∠FCA,由直角三角形的性质得出OG=
AE=AG,得出∠OAG=∠AOG=30°,求出∠FCA=∠FAC=30°,再由三角形内角和定理得出①正确;求出∠FAE=∠AEO=∠AFE=60°,得出△AEF是等边三角形,②正确;由含30°角的直角三角形的性质和勾股定理得出OA=
OE=
OG,得出AC=2OA=2
OG,③不正确;由中点的性质得出S△AOG=
S△AOE , 证明△AOE∽△ABC,得出
=
,得出S△AOG=
S△ABC , ④正确,即可得出结论.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,D是△ABC的边BC上的一点,且CD=AB,∠BDA=∠BAD,AE是△ABD的中线.
⑴若∠B=60°,求∠C的值;
⑵求证:AD是∠EAC的平分线.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在边长为4的正方形ABCD中,P是BC边上一动点(不含B、C两点),将△ABP沿直线AP翻折,点B落在点E处;在CD上有一点M,使得将△CMP沿直线MP翻折后,点C落在直线PE上的点F处,直线PE交CD于点N,连接MA,NA.则以下结论中正确的有(写出所有正确结论的序号)
①△CMP∽△BPA;
②四边形AMCB的面积最大值为10;
③当P为BC中点时,AE为线段NP的中垂线;
④线段AM的最小值为2
;
⑤当△ABP≌△ADN时,BP=4
﹣4.
-
科目: 来源: 题型:
查看答案和解析>>【题目】定义,如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N为线段AB的勾股分割点.
(1)已知点M,N是线段AB的勾股分割点,若AM=3,MN=5,求BN的长
(2)如图2,在Rt△ABC中,AC=BC,点M,N在斜边AB上,∠MCN=45°,求证:点M,N是线段AB的勾股分割点;阳阳在解决第(2)小题时遇到了困难,陈老师对阳阳说:要证明勾股分割点,则需设法构造直角三角形,你可以把△CBN绕点C逆时针旋转90度试试,请根据陈老师的提示完成证明过程.
(3)如图3,C是线段AB上的一定点,请在BC上画一点D,使C、D是线段AB的勾股分割点
(要求:完成尺规作图,保留作图痕迹,并在右侧分步写出作图步骤)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,反比例函数y=
(x>0)的图象经过矩形OABC对角线的交点M,分别与AB、BC相交于点D、E.,则下列结论正确的是(将正确的结论填在横线上).
①s△OEB=s△ODB , ②BD=4AD,③连接MD,S△ODM=2S△OCE , ④连接ED,则△BED∽△BCA.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10,动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,
(1)写出数轴上点B所表示的数 ;
(2)点P所表示的数 ;(用含t的代数式表示);
(3)M是AP的中点,N为PB的中点,点P在运动的过程中,线段MN的长度是否发生变化?若变化,说明理由;若不变,请你画出图形,并求出线段MN的长.

相关试题