【题目】下列请写出下列几何体,并将其分类.(只填写编号)
如果按“柱”“锥”“球”来分,柱体有_____,椎体有_____,球有_____;
如果按“有无曲面”来分,有曲面的有_____,无曲面的有_____.
![]()
参考答案:
【答案】 (1)(2)(6) (3)(4) (5) (2)(3)(5) (1)(4)(6)
【解析】根据立体图形的特点从柱体的形状特征考虑.
按柱、锥、球分类.属于柱体有(1),(2),(6),椎体有(3),(4),球有(5);
按“有无曲面”来分,有曲面的有(2),(3),(5),无曲面的有:(1),(4),(6).
故答案为:(1),(2),(6);(3),(4);(5);(2),(3),(5);(1),(4),(6).
-
科目: 来源: 题型:
查看答案和解析>>【题目】列方程解应用题.
程大位,明代商人,珠算发明家,被称为珠算之父、卷尺之父.少年时,读书极为广博,对数学颇感兴趣,60岁时完成其杰作《直指算法统宗》(简称《算法统宗》).在《算法统宗》里记载了一道趣题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完.试问大、小和尚各多少人?
-
科目: 来源: 题型:
查看答案和解析>>【题目】小刚在课外书中看到这样一道有理数的混合运算题:
计算:

她发现,这个算式反映的是前后两部分的和,而这两部分之间存在着某种关系,利用这种关系,他顺利地解答了这道题。
(1)前后两部分之间存在着什么关系?
(2)先计算哪步分比较简便?并请计算比较简便的那部分。
(3)利用(1)中的关系,直接写出另一部分的结果。
(4)根据以上分析,求出原式的结果。
-
科目: 来源: 题型:
查看答案和解析>>【题目】水果市场将120吨水果运往各地商家,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)
车型
甲
乙
丙
汽车运载量(吨/辆)
5
8
10
汽车运费(元/辆)
400
500
600
(1)若全部水果都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?
(2)为了节约运费,市场可以调用甲、乙、丙三种车型参与运送(每种车型至少1辆),已知它们的总辆数为16辆,你能通过列方程组的方法分别求出几种车型的辆数吗?
-
科目: 来源: 题型:
查看答案和解析>>【题目】在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外部相同,其中有5个黄球,4个蓝球.若随机摸出一个蓝球的概率为
,则随机摸出一个红球的概率为( )
A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】做大小两个长方体纸盒,尺寸如图(单位:cm)
(1)用a、b、c的代数式表示做这两个纸盒共需用料多少cm2.
(2)试计算做大纸盒比做小纸盒多用料多少cm2.

-
科目: 来源: 题型:
查看答案和解析>>【题目】若关于x的不等式x﹣
<1的解集为x<1,则关于x的一元二次方程x2+ax+1=0根的情况是( )
A.有两个相等的实数根
B.有两个不相等的实数根
C.无实数根
D.无法确定
相关试题