【题目】如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC , OD与AC交于点E.![]()
(1)若∠B=70°,求∠CAD的度数;
(2)若AB=4,AC=3,求DE的长.
参考答案:
【答案】
(1)解:∵AB是半圆的直径,
∴∠C=90°,
∵OD∥BC,
∴∠OEA=∠C=90°,∠AOD=∠B=70°,
∵OA=0D,
∴∠D=∠OAD=
,
∴在Rt△ADE中,∠DAC=90°-55°=35°.
(2)解:∵∠OEA=90°,
∴OE⊥AC,
∴AE=
AC=1.5,
∵AB=4,
∴AO=OD=2,
∴在Rt△AEO中,OE=
,
∴DE=OD-OE=
.
【解析】(1)根据直径所对的圆周角是直角得出∠C=90°,再根据OD∥BC,证出∠AOD=∠B=70°及∠OEA=90°,再求出∠D的度数,根据三角形的内角和定理即可求出∠DAC的度数。
(2)由(1)的证明过程可知OE⊥AC,先根据垂径定理得出AE的长,再在Rt△AEO中,利用勾股定理求出OE的长,然后根据DE=OD-OE,求出结果。
【考点精析】关于本题考查的三角形的内角和外角和勾股定理的概念,需要了解三角形的三个内角中,只可能有一个内角是直角或钝角;直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于任何一个和它不相邻的内角;直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2才能得出正确答案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,∠C=90°,AB=10 cm,BC=6 cm,动点P从点C出发,以每秒2 cm的速度按C→A的路径运动,设运动时间为t秒.
(1)出发2秒时,△ABP的面积为 cm2;
(2)当t为何值时,BP恰好平分∠ABC?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,已知AD∥BC,且DC⊥AD于D.
(1)DC与BC有怎样的位置关系?说说你的理由;
(2)你能说明∠1+∠2=180°吗?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形网格中,小正方形的边长为1,△ABC的顶点在格点上.
(1)判断△ABC是否是直角三角形?并说明理由.
(2)求△ABC的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】一架长2.5米的梯子AB如图所示斜靠在一面墙上,这时梯足B离墙底C(∠C=90°)的距离BC为0.7米.
(1)求此时梯顶A距地面的高度AC;
(2)如果梯顶A下滑0.9米,那么梯足B在水平方向,向右滑动了多少米?

-
科目: 来源: 题型:
查看答案和解析>>【题目】若两个二次函数图像的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”.
(1)请写出两个为“同簇二次函数”的函数;
(2)已知关于x的二次函数y1=2x2-4mx+2m2+1和y2=ax2+bx+5,其中y1的图像经过点A(1,1),若y1+y2与y1为“同簇二次函数”,求函数y2的表达式,并求出当
2≤x≤3时,y2的最小值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,∠C=Rt∠,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.

(1)出发2秒后,求△ABP的周长.
(2)问t满足什么条件时,△BCP为直角三角形?
(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?
相关试题