【题目】如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线AB平移至△FEG,DE、FG相交于点H.![]()
(1)判断线段DE、FG的位置关系,并说明理由;
(2)连结CG,求证:四边形CBEG是正方形.
参考答案:
【答案】
(1)
解:FG⊥ED.理由如下:
∵△ABC绕点B顺时针旋转90°至△DBE后,
∴∠DEB=∠ACB,
∵把△ABC沿射线平移至△FEG,
∴∠GFE=∠A,
∵∠ABC=90°,
∴∠A+∠ACB=90°,
∴∠DEB+∠GFE=90°,
∴∠FHE=90°,
∴FG⊥ED;
![]()
(2)
证明:根据旋转和平移可得∠GEF=90°,∠CBE=90°,CG∥EB,CB=BE,
∵CG∥EB,
∴∠BCG=∠CBE=90°,
∴四边形BCGE是矩形,
∵CB=BE,
∴四边形CBEG是正方形
【解析】(1)根据旋转和平移可得∠DEB=∠ACB,∠GFE=∠A,再根据∠ABC=90°可得∠A+∠ACB=90°,进而得到∠DEB+∠GFE=90°,从而得到DE、FG的位置关系是垂直;(2)根据旋转和平移找出对应线段和角,然后再证明是矩形,后根据邻边相等可得四边形CBEG是正方形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在正方形网格中,每个小正方形的边长为1个单位长度.平面直角坐标系xOy的原点O在格点上,x轴、y轴都在格线上.线段AB的两个端点也在格点上.

(1)若将线段AB绕点O逆时针旋转90°得到线段A1B1 , 试在图中画出线段A1B1 .
(2)若线段A2B2与线段A1B1关于y轴对称,请画出线段A2B2 .
(3)若点P是此平面直角坐标系内的一点,当点A、B1、B2、P四边围成的四边形为平行四边形时,请你直接写出点P的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】一个多边形的一个外角为α,且该多边形的内角和与α的和等于840°,则这个多边形的边数为_____,α=_____度.
-
科目: 来源: 题型:
查看答案和解析>>【题目】若等腰三角形的周长为10cm,其中一边长为2cm,则该等腰三角形的底边长为____________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.

(1)求证:BM=MN;
(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】若一元二次方程x2+2x+m+1=0有实数根,则( )
A.m的最小值是1
B.m的最小值是﹣1
C.m的最大值是0
D.m的最大值是2 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图一:在Rt△ABC中,∠C=90°AD、BE分别是△ABC中∠A、∠B的平分线,AD、BE交于点F,过F点做FH⊥AD交AC于点H,易证:AH+DB=AB;
(1)若将Rt△ABC中∠BAC、∠ABC的内角平分线改成外角平分线,即:AF、BF分别是∠BAC、∠ABC的外角平分线交于F点,FH⊥AF交直线AC于H点,如图二:请写出线段AH、BD、AB之间的数量关系,并证明。
(2)若将Rt△ABC中∠BAC、∠ABC的内角平分线改成一个是外角平分线,即:AF是∠A的内角平分线,BE是∠B的外角平分线交于F点,FH⊥AD交AC于点H.如图三:请写出线段AH、BD、AB之间的数量关系,无需证明。

相关试题