【题目】如图,在10×10的正方形网格中,每个小正方形的边长为1个单位长度.△ABC的顶点都在正方形网格的格点上,且通过两次平移(沿网格线方向作上下或左右平移)后得到△
,点C的对应点是直线上的格点
.
![]()
(1)画出△
.
(2)若连接
、
,则这两条线段之间的关系是 .
(3)试在直线
上画出所有符合题意的格点P,使得由点
、
、
、P四点围成的四边形的面积为9.
参考答案:
【答案】(1)如图所示;见解析;(2)平行且相等;(3)如图所示;见解析.
【解析】
(1)根据图形平移的性质画出△A'B'C'即可;
(2)图形平移得出AA',BB'平行且相等;
(3)在直线上画出点P,使所组成的三角形面积相等即可.
(1)如图所示:
(2)平行且相等;
(3)如图所示,P1,P2即为所求.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】将一副三角板如图摆放,∠OAB=∠OCD=90°,∠AOB=60°,∠COD=45°,OM平分∠AOD,ON平分∠COB,则∠MON的度数为( )

A.60°B.45°C.65.5°D.52.5°
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).
⑴请画出△ABC关于y轴对称的△A’B’C’(其中A’,B’,C’分別是A,B,C的对应点,不写画法);
⑵直接写出A’,B’,C’三点的坐标:A’ ( ),B’( ),C’( );
-
科目: 来源: 题型:
查看答案和解析>>【题目】无锡市旅游局为了亮化某景点,在两条笔直且互相平行的景观道MN、QP上分别放置A、B两盏激光灯,如图所示.A灯发出的光束自AM逆时针旋转至AN便立即回转;B灯发出的光束自BP逆时针旋转至BQ便立即回转,两灯不间断照射,A灯每秒转动30°,B灯每秒转动10°.B灯先转动2秒,A灯才开始转动.当B灯光束第一次到达BQ之前,两灯的光束互相平行时A灯旋转的时间是______秒.

-
科目: 来源: 题型:
查看答案和解析>>【题目】完全平方公式:(a±b)2=a2±2ab+b2适当的变形,可以解决很多的数学问题.
例如:若a+b=3,ab=1,求a2+b2的值.
解:因为a+b=3,ab=1
所以(a+b)2=9,2ab=2
所以a2+b2+2ab=9,2ab=2
得a2+b2=7
根据上面的解题思路与方法,解决下列问题:
(1)若(7﹣x)(x﹣4)=1,求(7﹣x)2+(x﹣4)2的值;
(2)如图,点C是线段AB上的一点,以AC、BC为边向两边作正方形,设AB=5,两正方形的面积和S1+S2=17,求图中阴影部分面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,∠BAC=90°,点D是BC上一点,将△ABD沿AD翻折后得到△AED,边AE交射线BC于点F.(友情提醒:翻折前后的两个三角形的对应边相等,对应角相等.)


(1)如图①,当AE⊥BC时,求证:DE∥AC.
(2)若
,∠BAD=x° .①如图②,当DE⊥BC时,求x的值;
②是否存在这样的x的值,使得△DEF中有两个角相等.若存在,并求x的值;若不存在,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校在艺术节宣传活动中,采用了四种宣传形式:A唱歌,B舞蹈,C朗诵,D器乐.全校的每名学生都选择了一种宣传形式参与了活动,小明对同学们选用的宣传形式,进行了随机抽样调查,根据调查统计结果,绘制了如图两种不完整的统计图表:
选项
方式
百分比
A
唱歌
35%
B
舞蹈
a
C
朗诵
25%
D
器乐
30%
请结合统计图表,回答下列问题:

(1)本次调查的学生共人,a= , 并将条形统计图补充完整 ;
(2)如果该校学生有2000人,请你估计该校喜欢“唱歌”这种宣传形式的学生约有多少人?
(3)学校采用调查方式让每班在A、B、C、D四种宣传形式中,随机抽取两种进行展示,请用树状图或列表法,求某班抽到的两种形式有一种是“唱歌”的概率.
相关试题