【题目】如图,直线y=kx+b与双曲线
(x﹤0)相交于A(-4,a)、B(-1,4)两点.
![]()
(1)求直线和双曲线的解析式;
(2)在y轴上存在一点P,使得PA+PB的值最小,求点P的坐标.
参考答案:
【答案】(1)直线的解析式为y=x+5,双曲线的解析式为
;
(2)点P的坐标为
.
【解析】根据一次函数和反比例函数的解析式求出点A、B的坐标,然后作出点A关于y轴的对称点C,连接BC,与y轴的交点即为点P,然后求出直线BC的解析式,求出点P的坐标.
(1)y=x+5,
;
(2)作点B关于y轴的对称点C(1,4),连接AC交y轴于点P.
易求得
,令x=0,得
,∴P
.
“点睛”本题考查了反比例函数与一次函数的交点问题,涉及了待定系数法求函数解析式、轴对称、最短路线问题,解答本题的关键是把两个函数关系式联立成方程组求出交点.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某企业积极响应政府“创新发展”的号召,研发了一种新产品.已知研发、生产这种产品的成本为30元/件,且年销售量y(万件)关于售价x(元/件)的函数解析式为:

(1)若企业销售该产品获得的利润为W(万元),请直接写出年利润W(万元)关于售价x(元/件)的函数解析式;
(2)当该产品的售价x(元/件)为多少时,企业销售该产品获得的年利润最大?最大年利润是多少?
(3)若企业销售该产品的年利润不少于750万元,试确定该产品的售价x(元/件)的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,直线
与
轴,
轴分别交于点A、B,抛物线
经过点A和点B,与x轴的另一个交点为C,动点D从点A出发,以每秒1个单位长度的速度向O点运动,同时动点E从点B出发,以每秒2个单位长度的速度向A点运动,设运动的时间为t秒,0﹤t﹤5.
(1)求抛物线的解析式;
(2)当t为何值时,以A、D、E为顶点的三角形与△AOB相似;
(3)当△ADE为等腰三角形时,求t的值;
(4)抛物线上是否存在一点F,使得以A、B、D、F为顶点的四边形是平行四边形?若存在,直接写出F点的坐标;若不存在,说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在
ABCD中,AB=4,AD=7,∠ABC的平分线BE交AD于点E , 则DE的长是( )
A.4
B.3
C.3.5
D.2 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,C、D是线段AB上两点,已知AC:CD:DB=1:2:3,M、N分别为AC、DB的中点,且AB=18cm.

(1)求线段CB的长;
(2)求线段MN的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】若一元二次方程x2﹣2x﹣1=0的两个根为m、n,则一次函数y=(m+n)x+mn的图象不经过( )
A.第一象限B.第二象限C.第三象限D.第四象限
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点A的坐标为(﹣8,0),点P的坐标为(-
,0),直线y=
x+b过点A,交y轴于点B,以点P为圆心,以PA为半径的圆交x轴于点C.(1)判断点B是否在⊙P上?说明理由.
(2)求过A、B、C三点的抛物线的解析式;并求抛物线与⊙P另外一个交点为D的坐标.
(3)⊙P上是否存在一点Q,使以A、P、B、Q为顶点的四边形是菱形?若存在,求出点Q的坐标;若不存在,请说明理由.

相关试题