【题目】如图,BD是△ABC的角平分线,点E,F分别在BC,AB上,且DE∥AB,BE=AF.
(1)求证:四边形ADEF是平行四边形;
(2)若∠ABC=60°,BD=4,求平行四边形ADEF的面积.
![]()
参考答案:
【答案】(1)答案见解析;(2)
.
【解析】试题分析:(1)已知BD是△ABC的角平分线,根据角平分线的定义可得∠ABD=∠DBE;再由DE∥AB,根据两直线平行,内错角相等可得∠ABD=∠BDE,所有∠DBE=∠BDE,根据等腰三角形的性质可得BE=DE;再由BE=AF,可得AF=DE;根据一组对边平行且相等的四边形即可判定四边形ADEF是平行四边形;(2)过点D作DG⊥AB于点G,过点E作EH⊥BD于点H,易求得DG与DE的长,继而求得答案.
试题解析:
(1)证明:∵BD是△ABC的角平分线,
∴∠ABD=∠DBE,
∵DE∥AB,
∴∠ABD=∠BDE,
∴∠DBE=∠BDE,
∴BE=DE;
∵BE=AF,
∴AF=DE;
∴四边形ADEF是平行四边形;
(2)过点D作DG⊥AB于点G,过点E作EH⊥BD于点H,
![]()
∵∠ABC=60°,BD是∠ABC的平分线,
∴∠ABD=∠EBD=30°,
∴DG=
BD=
×4=2,
∵BE=DE,
∴BH=DH=2,
∴BE=
=
,
∴DE=
,
∴四边形ADEF的面积为:DEDG=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】纪中三鑫双语学校准备开展“阳光体育活动”,决定开设足球、篮球、乒乓球、羽毛球、排球等球类活动,为了了解学生对这五项活动的喜爱情况,随机调查了m名学生(每名学生必选且只能选择这五项活动中的一种).

根据以上统计图提供的信息,请解答下列问题:
(1)m= ,n= .
(2)补全上图中的条形统计图.
(3)在抽查的m名学生中,有小薇、小燕、小红、小梅等10名学生喜欢羽毛球活动,学校打算从小薇、小燕、小红、小梅这4名女生中,选取2名参加全市中学生女子羽毛球比赛,请用列表法或画树状图法,求同时选中小红、小燕的概率.(解答过程中,可将小薇、小燕、小红、小梅分别用字母A、B、C、D代表)
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知等边△ABC的边长为
,D是AB上的动点,过D作DE⊥AC于点E,过E作EF⊥BC于点F,过F作FG⊥AB于点G.当G与D重合时,AD的长是( )A.
B.
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,P点从点A开始以2厘米/秒的速度沿A→B→C的方向移动,点Q从点C开始以1厘米/秒的速度沿C→A→B的方向移动,在直角三角形ABC中,∠A=90°,若AB=16厘米,AC=12厘米,BC=20厘米,如果P、Q同时出发,用t(秒)表示移动时间,那么:
(1)如图1,若P在线段AB上运动,Q在线段CA上运动,试求出t为何值时,QA=AP
(2)如图2,点Q在CA上运动,试求出t为何值时,三角形QAB的面积等于三角形ABC面积的
;(3)如图3,当P点到达C点时,P、Q两点都停止运动,试求当t为何值时,线段AQ的长度等于线段BP的长的


-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两同学玩“托球赛跑”游戏,商定:用球拍托着乒乓球从起跑线
起跑,绕过
点跑回到起跑线(如图所示);途中乒乓球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.结果甲同学由于心急掉了球,浪费了6秒钟,乙同学则顺利跑完.事后,甲同学说我俩所用的全部时间的和为50秒”,乙同学说捡球过程不算在内时,甲的速度是我的1.2倍.”根据图文信息,请问甲同学的速度是______米/秒.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在
中,
、
的垂直平分线
、
相交于点
,若
等于
,则
等于____________
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在直角
中,已知
,
边的垂直平分线交
于点
,交
于点
,且
,
,则
的长是________.
相关试题