【题目】如图,在⊙O的内接四边形ABCD中,AB=AD,∠C=120°,点E在⊙O上.
(1)求∠AED的度数;
(2)若⊙O的半径为2,则
的长为多少?
(3)连接OD,OE,当∠DOE=90°时,AE恰好是⊙O的内接正n边形的一边,求n的值.
![]()
参考答案:
【答案】(1)∠AED=120°;(2)
π;(3)n=12.
【解析】
(1)连接BD,根据圆的内接四边形的性质得出∠BAD的度数,由AB=AD,可证得△ABD是等边三角形,求得∠ABD=60°,再利用圆的内接四边形的性质,即可求得∠E的度数;
(2)连接OA,由圆周角定理求出∠AOD的度数,由弧长公式即可得出
的长;
(3)首先连接OA,由∠ABD=60°,利用圆周角定理,即可求得∠AOD的度数,继而求得∠AOE的度数,即可得出结果.
(1)连接BD,如图1所示.
![]()
∵四边形ABCD是⊙O的内接四边形,
∴∠BAD+∠C=180°.
∵∠C=120°,
∴∠BAD=60°.
∵AB=AD,
∴△ABD是等边三角形,
∴∠ABD=60°.
∵四边形ABDE是⊙O的内接四边形,
∴∠AED+∠ABD=180°,
∴∠AED=120°.
(2)连接OA,OD,如图2.
![]()
∵∠AOD=2∠ABD=120°,
∴
的长=
.
(3)如图所示.
∵∠ABD=60°,
∴∠AOD=2∠ABD=120°,
∵∠DOE=90°,
∴∠AOE=∠AOD-∠DOE=30°,
∴n=
=12.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AA1,A1A2,A2A3,A3B,AB分别是五个半圆的直径,两只小虫同时出发,以相同的速度从点A到点B,甲虫沿ADA1,A1EA2,A2FA3,A3GB路线爬行,乙虫沿ACB路线爬行,则下列结论正确的是( )

A. 甲先到点B B. 乙先到点B C. 甲、乙同时到点B D. 无法确定谁先到点B
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点B在线段AC上,点E在线段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M,N分别是AE,CD的中点。试探索BM和BN的关系,并证明你的结论。

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,MN是⊙O的直径,若∠A=10°,∠PMQ=40°,以PM为边作圆的内接正多边形,则这个正多边形是________边形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图所示,在ΔABC和ΔADE中,AB=AC,AD=AE,∠BAC=∠DAE,,且点B,A,D在同一条直线上,连接BE,CD,M,N分别为BE,CD的中点, 连接AM,AN,MN.
⑴.求证:BE=CD
⑵.求证:ΔAMN是等腰三角形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知多项式
能被
整除,求
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在等边三角形ABC的外侧作直线AP,点C关于直线AP的对称点为点D,连接AD,BD,其中BD交直线AP于点E.
(1)依题意补全图形;(2)若∠PAC=20°,求∠AEB的度数;
(3)连结CE,写出AE, BE, CE之间的数量关系,并证明你的结论.

相关试题