【题目】如图,矩形ABCD中,BE平分∠ABC交AD于点E,F为BE上一点,连接DF,过F作FG⊥DF交BC于点G,连接BD交FG于点H,若FD=FG,BF=3
,BG=4,则GH的长为 . ![]()
参考答案:
【答案】![]()
【解析】解:解法一:如右图,过点F作BC的垂线,分别交BC、AD于点M、N,则MN⊥AD,延长GF交AD于点Q,如图所示.
![]()
∵四边形ABCD是矩形,
∴∠ABC=90°,AD∥BC,
∵BE平分∠ABC,
∴∠ABE=∠EBC=45°,
∴△MBF是等腰直角三角形,
∵BF=3
,
∴BM=FM=3,
∵BG=4,
∴MG=1,
∵FD⊥FG,
∴∠DFG=90°,
∴∠DFN+∠MFG=90°,
∵∠DNF=90°,
∴∠NDF+∠DFN=90°,
∴∠NDF=∠MFG,
在DNF和△FMG中,
,
∴△DNF≌△FMG(AAS),
∴DN=FM=3,NF=MG=1,
由勾股定理得:FG=FD=
,
∵QN∥BC,
∴
=
,
∴
=
,
∴FQ=
,QN=
,
设GH=x,则FH=
﹣x,
∵QD∥BG,
∴
,
∴
,
x=
,
即GH=
.
解法二:如右图,过F作FN⊥BC于N,过B作BM⊥FG于M,
![]()
∵四边形ABCD是矩形,
∴∠ABC=90°,AD∥BC,
∵BE平分∠ABC,
∴∠ABE=∠EBC=45°,
∴△NBF是等腰直角三角形,
∵BF=3
,
∴BN=FN=3,
∵BG=4,
∴NG=1,
在Rt△FNG中,由勾股定理得:DF=FG=
=
,
∵S△BFG=
BGFN=
FGBM,
∴4×3=
BM,
∴BM=
,
∴GM=
=
=
,
∴FM=GF﹣GM=
﹣
=
,
∵DF∥BM,
∴△DFH∽△BMH,
∴
,
∴
=
,
∴HM=
,
∴GH=HM+GM=
+
=
;
所以答案是:
.
【考点精析】本题主要考查了三角形的面积和矩形的性质的相关知识点,需要掌握三角形的面积=1/2×底×高;矩形的四个角都是直角,矩形的对角线相等才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,长方形
中,
点
从点
出发,沿
运动,同时,点
从点
出发,沿
运动,当点
到达点
时,点
恰好到达点
,已知点
每秒比点
每秒多运动
当其中一点到达
时,另一点停止运动.
求
两点的运动速度;
当其中一点到达点
时,另一点距离
点
(直接写答案);
设点
的运动时间为
秒
,请用含
的代数式表示
的面积
,并写出
的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校园文学社为了解本校学生对本社一种报纸四个版面的喜欢情况,随机抽取部分学生做了一次问卷调查,要求学生选出自己喜欢的一个版面,将调查数据进行了整理、绘制成部分统计图如下:

请根据图中信息,解答下列问题:
(1)第一版=____%,“第四版”对应扇形的圆心角为________°;
(2)请你补全条形统计图;
(3)若该校有1200名学生,请你估计全校学生中最喜欢“第三版”的人数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】数学课上张老师将课本
页第
题进行了改编,图形不变.请你完成下面问题.
如图,
.求证:

如图,
.求证:

如图,
求证:

-
科目: 来源: 题型:
查看答案和解析>>【题目】解方程:
(1)

(2)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,平面直角坐标系中,已知点A(-3,3),B(-5,1),C(-2,0),P(a,b)是△ABC的边AC上任意一点,△ABC经过平移后得到△A1B1C1,点P的对应点为P1(a+6,b-2).

(1)直接写出点C1的坐标;
(2)在图中画出△A1B1C1;
(3)求△AOA1的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】图1、图2是两张形状大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,线段AB、EF的端点均在小正方形的顶点上.

(1)如图1,作出以AB为对角线的正方形并直接写出正方形的周长;
(2)如图2,以线段EF为一边作出等腰△EFG(点G在小正方形顶点处)且顶角为钝角,并使其面积等于4.
相关试题